Computational Physics Course 2020 summer

Brief introduction of lecturers

Schedule
In the first half of the course, I will introduce the density functional theory (DFT) and the
software package “Quantum Espresso”. The contents are as follows
1. Density functional theory (DFT)
2. Relation with many-body theory
3. Quantum espresso
In the second half Prof. Arita will show you
4. Introduction to strong correlation
5. Dynamical mean field theory (DMFT)
6. DFT+DMFT



General introduction

I will introduce the density functional theory (DFT) and its extensions, which have been
developed as a tool to simulate the electronic structure of materials and to predict properties
of materials. The importance of DFT is in its practicality; the theory provides an approximate
but practical way to understand the electronic structure, which has had, and will continue to
have, impact in the research of materials. (In my definition, materials mean those matters
targeted by condensed matter physics, biophysics, or chemical physics.) In this context, I
consider it important for beginners to practice a simulation, so that students are requested to

practice a few simulations.

Why is practicality so important?

To understand the electronic structures, one can use the many-body wave function, or
alternatively the Green’s function. The many-body wave function contains full information
but has impractically large degrees of freedom. This may be understood by counting the
number of ways to assign ten electrons to M orbitals, which amounts to M'°! The number
can be reduced by considering symmetry but is still too large. Of course, all the degrees of
freedom are not essentially important, and it is possible to considerably reduce the number
with information theory for example: Research in that direction is on-going. The need for
practical theory has led to the invention (development) of the density functional theory. This
point was emphasized by W. Kohn in his Nobel prize lecture:
https://www.nobelprize.org/uploads/2018/06/kohn-lecture.pdf

The invent of DFT turned out to be revolutionary in that the electronic structure
calculation has made an easy access of nonexperts, including experimentalists as well as
theoreticians working on abstract models. From a practical point of view, experimentalists are
often required to do a DFT simulation to support their experiment by reviews of journals and
similar things happen for theoreticians. Experiencing a simulation at the start of his/her

research life should be advantageous.

Simulation in this course

[ will spend a few hours to show students how to install a simulation software and how to
use it. I will focus on the program package called Quantum Expresso (QE). This is currently
the most popular one in the world and there are many how-to’s available via the internet.
Students of this course are requested to use their own computers and will be guided to do a

few simulations.



Introduction to Density functional theory (DFT)

[ will follow the article written by J. Toulouse

http://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_dft.pdf
which was prepared for the summer school in France.
Some recommended articles
The most popular introduction to DFT was written by Parr and Yang.
R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford
University Press, New York, 1989).
which covers the development until mid-1980. Practical aspect of DFT simulation is summarized
in
W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-
VCH, New York, 2001),
which covers the technology on the exchange-correlation that had been developed until 2000
although further developments were made thereafter. Most recent textbook can be found, for
example, in
T. Helgaker, P. Jorgensen and ]. Olsen, Density-Functional Theory: A Convex Treatment
(WileyBlackwell, 2016)

The starting Hamiltonian
Here we on the Born-Oppenheimer approximation and non-relativistic approximation for
N-electron systems. Then, the target of study is the electronic Hamiltonian, consisting of the
kinetic energy of electrons, electron-electron interaction, and the Coulomb field from the
nuclear charge
Hey = Te + Wee + Ve, (1.4)
for the details see Eqgs. (1.1)-(1.4) of the article by J. Toulouse (hereafter, I will call it just
“article”). Instead of the wave function |¥), the density n(r) can be used to characterize the

ground state: This is what DFT is telling about.

What does it mean?
The density is defined by

n(r) = N-ﬂ [P (x, x5, -, xy)|? dodx, -+ dxy, (1.6)

where x is the space-spin coordinate and satisfies [n(r)dr = N. This three-dimensional
quantity is the “descriptor” of the N -electron system although |¥) is, of course, the

descriptor as well. This surprising statement was shown by Hohenberg and Kohn about fifty
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years ago. (This is surprising when considering large difference in the degrees of freedom

between the density and the wave function.)

Hohenberg-Kohn theorem

This theorem relates or maps the electron density n(r) to the external potential v(r). In

considering the mapping, it is trivial that mapping from v to n exits simply because, given
the external potential v, one can solve, in principle, the Schrédinger equation and the density
n is obtained from Eq. (1.6). What is nontrivial is the reverse mapping, i.e., mapping from n
to v, which can be derived as follows. (Before going in detail on the Hohenberg-Kohn
theorem, I note that this may be counterintuitive in that the precise measurement of the

electron density yields uniquely the position of nuclei.)

The proof can be given by different ways; (1) two-step proof by contradiction and (2)

proof using the Levy’s constraint search. Here I will show the first one only.

Two-step proof by contradiction (a modified version)

We will derive a contradiction for the assumption that there exist two local potentials

(differing by more than an additive constant) which have the same ground-state density.

From the two local potentials, v;(r) and v,(r) which differ more than an additive
constant, one can construct the Hamiltonians, H;, =T+ W,, +V, and H, =T + W,, + V,.

Let us assume that they share the same ground state |¥). Then, one gets

(7, = %) 1®) = (B, — E|¥), (1.9)
namely
N
D ) = v OI¥ Gea -, X) = (By = E)P (3, %0, ). (110)

holds globally in the phase space, leading to v;(r) — v,(r) = const when the potentials
reasonably well behave almost everywhere so that ¥(xy,x,,-,xy) # 0 except for some
points. This contradicts with the initial hypothesis.

We will then assume that different states |¥;) and |¥,) corresponding to H; and H,,
respectively, have the same density n(r). These states are different and therefore |¥,)
cannot be a ground-state wave function of Hj,

Ey = (W |H|¥1) < (Wo| By |W,) = (Wl Hy + V) = Vo|¥,) = E; + [ [v3(r) — v, (0)n(r)dr (1.11)
holds. In parallel, we can show the following:

E, <E; + [ [v,(@) — vy(M)In(r)dr (1.12)
Then, we arrive at an inconsistent inequality E; + E, < E; + E,.

Therefore, we are lead to the conclusion that v;(r) and v,(r) are the same except for
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the additive constant and the mapping from n to v holds.

From the discussion made in the proof it is also clear that the ground-state energy E can
be obtained as the minimum of the expectation value of the Hamiltonian, or there exist a total-
energy functional E[n] which is given as

E[n] = mnin{<11’[n]|T + Wee + [ v[n] (r)n(r)dr|li’[n])}. (1.15)
We can also define a functional called Hohenberg-Kohn functional as

F[n] = min{(¥ [n]|T + Wee| P [n])}. (1.14)
Once the functional has been obtained, the ground state density and the ground state energy

can be obtained without solving the Schrodinger equation. The advantage is very large.

v-representability

It is reminded that ¥[n] is not uniquely determined when the ground-state is degenerate.
Nevertheless, the functionals F and E are uniquely determined. These values can be
determined by finding a minimum once the functionals F[n] and E[n] are established. This,
however, does not mean that the statement is of practical importance, especially because the
search needs to be restricted to those represented from the ground-state wave function via

Eq. (1.6), namely those that satisfy the v-representable condition. All three-dimensional

functions are not necessarily v-representable!

Levy-Lieb constrained minimization
The Hohenberg-Kohn functional F[n] can be made more practical when we introduce an
alternative definition (Levy and Lieb)

F[n] = {p“i‘;‘l("’ﬁ" + Wee|¥) (1.17)
in terms of the constrained minimization of ¥. This should provide the same functional as
that provided by Eq. (1.14) but does not require the v-representability, so that the minimum
can be found by simply searching all functions that satisfy [ n(r)dr = N: namely assuming
N -representability. Of course, the obtained density does not necessarily satisfy the v-
representability, which needs to be checked afterwards. When Eq. (1.17) is introduced, it is

straightforward to show that the ground-state energy can be obtained by minimizing n(r):
Ey = mq;n(‘}’ﬁ" + Wee + Vop|¥) = min lrpnin('}’ﬁ" + Wee + Ven|¥)
n -n

= min {w_lg(‘{’ﬁ" + Wee|P) + [ v(r)n(r)dr}

= min{F[n] + [ v(r)n(r)dr} (1.18)

Additional comment of Hohenberg-Kohn theorem
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It should be emphasized that, so far, more than fifty years were spent in trying to find a
reasonable functional form appropriate for materials; the accuracy is still not enough for many
materials. In the early stage, people searched a form for the kinetic energy functional T[n],
but the efforts have not been so successful. Instead, method of Kohn-Sham was introduced as
will be explained below. People have also searched a form for the electron-electron interaction,
Voe[n]; equivalently, a form for the exchange-correlation functional that is define as V,.[n] =
Vyln] + Vi.[n], where the first term is the Hartree-energy defined as

Vyln] = % f %drdr’,

and is sometimes called as the classical Coulomb.

Exercise
To understand the difficulty of constructing the kinetic energy functional, let us test the one
constructed using the Thomas Fermi (TF) model. Note that TF model is appropriate for
systems where the electron density has a small spatial dependence, i.e., for a nearly uniform
system. According this model, the kinetic functional is given as

T = %[ n(r)3adr

for a three-dimensional system and as
72 L
T = —f dxn(x)3dx
6 Jo

for a one-dimensional system. From this, one can naively define the kinetic energy density
functional as

2

tln(x)] = —n(x)3

This is a local density approximation to the kinetic energy.
The integration can be done analytically for a 1D potential well of infinite wall height,

where the wave function has a form

nmx
¢n(x) = \2/Lsin(—),
and the kinetic energy is given as

L
T—iz - (5 d —nZN(N+1)(N+1)
- sz sin® L)x 612 2)
n 0

When using the Thomas Fermi model, the kinetic energy is approximated as



L N 3
2 (2 nmx 72 9 3
w_" [)- 2 L 24742
T —6I{L231n (L )} dx 6L2N<N +8N+8>.
0 n
Therefore, the ratio T™F/T behaves as a function of the density N/L like
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which is reasonably well for higher density, or large value for N/L, but deteriorates with
decreasing density. The reason can be found by comparing the TF kinetic density and the

exact one.
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The values for N = 10, N/L = 6 are comparable in the region between the potential walls but
are quite different near the end points. This reflects the general difficulty of constructing the
kinetic energy density functional in the region where the density rather abruptly changes.

Note that the potential changes very abruptly near the nuclear position as well and the
density also changes in the core region. This is the reason why Thomas Fermi model fails; the
model cannot reproduce the shell structure of an atom!

There have been much efforts to develop the kinetic energy functional as can be found
from the textbook written by Parr and Yang. None of the effects have been very successful as
far as I know. The reason may be due to the complexity of the functional. There is a trial to
construct the functional T[n] by machine learning (Brockherde et atl. “Bypassing the Kohn-

Sham equations with machine learning”, Nat. Comm. 8, 872 (2017)).

Kohn-Sham method (modern version)
To overcome the problem of constructing the kinetic energy functional, Kohn and Sham

proposed a method to replace the kinetic energy functional with that of a non-interacting
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system that shares the same density distribution n(r). More precisely, one assumes that there
always exists a non-interacting system under the influence of an effective potential vgg (1)
whose ground-state electron density is the same as that of the system of interest. Since the
wave function of the non-interacting system can be relatively easily computed numerically,
the kinetic energy functional can also be easily constructed, which will be denoted as T,[n].
The proposition of Kohn and Sham is to use Tg[n] instead of T[n] and approximate F[n] as
Fln] = Ts[n] + Vuln] + Vic[nl,
where
Ts[n] = min(®|T|@) = (@[n]|T|@[n]). (1.21)
The last equation reflects the fact that the non-interacting system can be represented by the
Slater determinant &. (Here we use the Hartree-Fock state as the reference system but it can
be anything in principle. Importantly, the reference system should be such that the ground-
state wave function can be prepared.) (You may wonder if the kinetic energy can be
approximated by that of Hartree-Fock; this is not the case always especially for strongly
interacting systems.)
By tracing Eq. (1.18) reversely, we find that the total-energy can be obtained by searching

for the density representable by the Slater determinant that minimizes the HK functional as

Ey = min{F[n] + [ v(r)n(r)dr} = min {min(®|T[®) + Euyeln] + [ v(rIn(rdr}

= min {min(CI)|T + l7ne|<D) + Ech[nqa]}

n d-n
= md;n{(cbﬁ" + Voe| @) + Epiyelnol}. (1.22)
By minimizing the functional with respect to the Slater determinant @, the density can be

obtained as ng. Note that the Hartree-exchange-correlation functional can be decomposed

nto
Eyxc[n] = Euln] + Ex[n] + E [n]
where
Ex[n] = (®[n]|Wee|@[n]) — Eylnl, (1.26)
and
Ec[n] = (P[]|T + Wee|®[n]) — (D[n]|T + Wee| @[n]). (1.27)

From these definitions, we find that the difference in the true kinetic energy functional and
that of the non-interacting system, T[n] — T,[n], is absorbed by the correlation functional and
thus the correlation functional is comprised of the kinetic energy contribution and potential
energy contribution.

E.[n] = T.[n] + U.[n], (1.27)

where



T.[n] = (‘P[n]|’T‘|‘P[n]> - (Cb[n]|7"|d>[n])
Ucln] = (P[] [Wee| ¥ [nl) — (@[n][Wee|@[n]).
Note that this is a rather old definition of the exchange-correlation functional but recently
this “dirty” definition, dirty in that the kinetic energy and the potential energy having different
scaling properties are mixed, is avoided by introducing the adiabatic connection formula, as

explained below.

Kohn-Sham equation

It is well described in many textbooks on DFT how to determine the Slater determinant.
It is determined by solving a Schridinger-like equation called Kohn-Sham equation. The
equation can be derived by rewriting the minimization with respect to ® by the minimization
with respect to the single-electron orbitals 1; that constitute the Slater determinant. Within
the scheme of the unrestricted closed-shell description of the Slater determinant, ¥;(x) =

¢:(1) x5, (0), the functional to be minimized is

N 2
E[{¢p:}] = Z J i) (‘ V7 + vne(r)> ¢;(r)dr + Eyyc[n] (1.28)

which is very similar to the Hartree-Fock theory. The variation is usually done by keeping the

orthonormal condition and the relation

N
n@) = ) i@ (1.29)
When the variation is done using the method of Lagrange multiplier,
N
Li@) = Eled - ) &l ¢i@@dr - 1), (130)
as
SLIGN
5o = (1.31)
we can obtain the differential equation
1 6EHXC[n] _
<—§V2 + Une(r)) ¢i(r) + o &¢i(r). (1.32)

The left-hand side of the equation can be rewritten as

6Ech[n] 571(1”') dr' =
sn(r) 6 ‘(

2T U(1) + i) 4.

2

(37 + el +

Therefore, the differential equation becomes

(=572 + #ner) + Ve () 1) = () (135)

This is called as the Kohn-Sham equation.



Self-consistent field

Note that the effective potential veg(1) = v (1) + vpye(r) 1s a functional of the density
n(r), so that the Kohn-Sham equation needs to be solved by keeping the self-consistency
between the density used to construct the effective potential and that resulting from (1.29).
This makes the calculation much more difficult than the one-electron Schrédinger equation.
At this point, it is very instructive to compare the Kohn-Sham equation and the Hartree-Fock

equation: The latter is

(=572 + 50 + ) + 50 1) = 1),

where

BPu(r) = - f S [EP 4y gy = - [2HHD g, (ryar

= [ ver g

is non-local. The non-local nature of the Hartree-Fock has a significant meaning in that
contributions of the i-th orbital to the Hartree potential vy(r) and the exchange potential
vy (r,1r") are the same except for the different sign. That is, the contributions of the i-th
orbital are canceled out when determining the i-th orbital. This property of the effective

potential is called self-interaction free.

Local density approximation for the exchange-correlation

The exchange-correlation functional, given by Eqs. (1.26-1.27), are generally non-local;
non-locality of the exchange was shown explicitly in the above and that of the correlation is
more complicated as shown below. Non-locality makes the self-consistent calculation very
complicated. In the early stage of DFT, therefore, people searched for a local form of the
exchange-correlation.

The simplest form for the exchange can be found in the literature as the Thomas Fermi

exchange or Dirac exchange as
1

3/3\3 4
Ein(r)] = _Z(E) [ n(r)3 dr. (1.53)
Later, elaborate calculation was done for homogeneous electron gas, where the electron
density is constant, using various values for the electron density n and the calculated energy
density was related to n to find a better local form for the exchange-correlation. The resulting

functional was called “local density approximation (LDA)”. LDA was found to reasonably well
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reproduce the energy of many weakly interacting electrons and was used to predict stability,

phonon, dynamics of materials.

How to deal with spin
You may wonder how to deal with spin. Or, you may alternatively want to use an
unrestricted Hartree-Fock form for the non-interacting system (see discussion around Eq.

(1.28)). The corresponding Hohenberg Kohn functional can be defined as

Flny,n] = min (P|T + Wee|¥). (1.57)

Yonp,ny

The search is done for normalized antisymmetric functions ¥ that yields

m(r) = Nﬂ [P T, x5, 0, xp)dx, - dxy (1.58a)

and

n(r) = Nﬂ Wi, xp, o, xy)dx, - dxy. (1.58b)

A KS scheme can be derived by decomposing F[n;,n;] into the kinetic, Hartree, and

exchange-correlation parts, where the kinetic part is defined as

Ts[ny,ny] = min (@|T|®). (1.60)

P-nyny

The Slater determinant is composed from the one-electron orbital of the form

¢i (X) = ¢iai (r))(ai (0)

and then the KS equation can be derived separately for each spin state

(—%Vz + Ve () + vu(r) + vxc,T(T)> bir(r) = en(M)Pir () (1.61a)

(—%Vz + Vpe (1) + v (1) + vxc,l(r)> b () = g, ()P (r) (1.61b)

The exchange-correlation potentials are given in terms of the derivative with respect to the
electron densities as shown in Egs. (1.62)-(1.63) of the article. It was shown by Oliver and
Perdew that the spin-dependent exchange functional Ey[n;,n;] can be expressed rigorously

as

1
Ey[ng, ] = > (Ex[2m] + Ex[2n,]), (1.64)

because, in the non-relativistic case,
Ex [nT! nl] = Ex [nT: 0] + EX[OJ ni] (S 8)

holds and, therefore, when using the spin-unpolarized case, ny = n; = n/2, we get
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E[n,0] = E,[0,n] = %EX[Zn]. (S.9)

using the spin-scaling relation which states that the up-spin density and down-spin density
are uncoupled to form the exchange functional.

This formalism for the spin density functional theory suggests a possibility to construct
extended formalisms as well. Indeed, by describing the HK functional in terms of the density
and the current density, the current density functional theory was developed and was applied
to electrons under excited states. One can also describe the HK functional using the electric
field and magnetic flux to simulate the electrons under inhomogeneous electromagnetic field.
In those cases, it is not obvious if one can prepare appropriate exchange-correlation functional.
If one wants to follow the procedure adopted in LDA, one needs to do an accurate simulation
under the inhomogeneous conditions and establish the functional relation. This is not always

possible especially when one needs to construct a non-local functional.

Density matrix formalism

As a step to extend LDA, it is convenient to adopt the density matrix formalism or the
Green’s function formalism. Let us, for the moment, focus on the former formalism. In that
case, we need to investigate up to the second order density matrix because we are studying
electrons interacting through two-body interaction, that is the Coulombic interaction.

The two-body density matrix is defined as

n,(ry,ry) = N(N — 1) J_UI‘P[n](xl,---,xN)IZdaldazdx3 cedxy, (2.1

although factor 1/2 is multiplied in many literatures. This density matrix corresponds to the
probability of finding two electrons simultaneously at r; and r,. This density matrix is
particularly important because the electron-electron interaction functional can be written
using n, as
(W[n]|Wee|W ﬂ T::r_l:zzl) ridr,. (2.2)
The two-body density matrix is conventionally decomposed into the product of the density
and the rest as
Ny (ry,12) = n(r)dn(ry) + ngye(ry, ro). (2.3)
The second term in the right-hand side is called the exchange-correlation pair density, which
can be further decomposed as
Noxc(T1,T2) = n(rdng(ry, 12), (2.4)
where ny. is called the exchange-correlation hole. We call this as a hole because of the

existence of the following sum rule
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J nye(ry,rp)dr, = —1. (2.6)
That is, the value is negative when integrated over the whole space. The electron-electron
interaction energy can be rewritten as

(lp[n]lweeltp[ J]' n(r1)n(r2) dr,dr, +%ff n(r)ny(ry, 1) dr dr,.

|7y — 15| |ry — 15|

This indicates that the (potential energy contribution) of exchange-correlation energy is given

by the interaction with its exchange-correlation hole.

Exercise

Let us solve a Hooke’s atom problem and compute the exchange-correlation hole. The system

consists of two electrons confined in a Harmonic potential and the Hamiltonian is written as
1

_ 1 1
H=--Vi—-V3 +§k(r12 +18) +

2 2 7y — 7l

which is a model He atom. Using the center of mass coordinate R = (r; +r,)/2 and the

relative coordinate u = r, — r;, the Hamiltonian becomes
—~ 1 1 1
H=—-V§—Vi+kR*+—ku?+—,
4R 4 u

so that the wave function can be decomposed into a product ¥(ry,r,) = y(R)®(u) and the

Schrodinger equation becomes

(_%vfe + kR2>)((R) = Egx(R)

1 1
(—vg + gl + ;) ®(w) = E,d ).

The first differential equation provides the well-known solution

3
1 2VEk\*
- —VKkR? 1/27,1/4 1/21,1/4 1/21,1/4
Xn(R) \/annynznx!ny!nzl< - ) e VKR H, (2'/2k"/*Ry)Hy (2'/2kY/* Ry, ) Hy, (21/2Kk"/*R,)
3
Epn= (nx +n, +n, +§)Vk

The second one is centrosymmetric and the solution should have a form

Ry (W)Y ()

and the equation for the radial part is

1d aa+1
(= () o k4 R = Bk

u?du u?

By rewriting R;(u)
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vk
e v T;(w)

R(u) = ”

we obtain

d I+1) vk 1
a + ) + 7 + a) Tl(u) = Eu'lTl(u).

d? N
(_W +Vvku

Following the Frobenius method, let us express the regular solution for T;(u) as

T,(w) = ultt z a;ut
i=0
and require that the recursion of the coefficient q;
—(+ 1+ DG+ Dau* " + VeG4 1+ Dau™™ + 10+ Dau'+-t + <7 - uy,) a;uttttl
+au*tt=0
to terminate at some point of i. The recursion is rewritten as
. . . " 1
—(+14+2)+ 1+ Dajyg + VeG + Daj_y + 10+ Dajeq + — = But |y +a;[u™t =0
so that
. 1
a; + (\/F (l +1+ 7) - Eu,l) a;_q
Gir1 = (+D(i+20+2)
E trs i+ VE () )
= = kll+=)—Ey )
“ =30+ = " @y \aaen T V) T B

5
_ @+ (VE(1+3) - Buy)
s = 32l + 4)
The termination condition depends on the value of vk, and the simplest solution can be

found for those parameters which vanish a, and as: The result is

1
Vie = 21+ 1)
and
5 2l+5
w4+ 1)

Namely, for the harmonic potential of strength k = 4(l + 1)?, analytical solution can be found.
(Other solutions can be found by vanishing a with higher indices.)
The radial wave function is

uZ
u) e 8(+D

1
RiG) = u! (1 TGS

and thus, the wave function for the relative coordinate is
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u2

u) e _8(l+ 1) Ylm (ﬁ).

1
db(u)=ul(1+2(l+1)

When multiplied by the state with the lowest energy for the center of mass yo(R) is

1 7 __R? 1 __u?
R)D — 2(l+1) (1 + ) 8(I+1)Y,. (u
Xo(R)P(w) (n(l+1)> ¢ “UTaar e tm (W)
1 i ) 1
= (———) e @D |r, — l<1+— - )Y T =77).
(n(l+1)> e |ry — 14| 2(l+1)|7'2 | )V (2 1)
After normalization,
_@f+rd) 1
¥(ry,ry) = Ne *ED |r, — 1y (1 + m |r; — r1|> Yim (P2 = 77).
Pair density is then obtained as
rZ+r2)
n,(r r)=N2e_2%l+12)|r -1+ ——— ! Y,z = T)|?
2ry, 1 ) 2 1 2(l+1) m (T2 1
m=-1
20+ 1 _@i+rd) 1 z
= N} ypld 2D |, — 1y | % (1 + 207D |r r1|)

after taking average over the degenerate states. The electron density is obtained as

20+ 1 _Gi+r?) 1 2
Zlew el Ir_r1|21(1J’2(l+1) lr_rl') dry

21+ 1 _2r +u?-2rucos @ 1 2
—oN ﬂ[ 20+0D) u?l (1 + u) 2mu? sin 6 dud®.
2(0+1)

n(r)=2N02< 4 e” 2[( +—+ r+ )erf(\/_))>

TZ
3Vme T (1567 + 3613 + r5 + 8(12 + 12r2 + %) erf(%)
8r

Therefore,

for I =0 and

TZ
n(r) = 2N2| 6e 2 (10 +72) +

for | = 1. The exchange-correlation hole is then obtained from

ny(ry,13) — n(r)n(ry)
n(ry)

Nyc (1'2; 1'1) =

For [ = 0, it looks like
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Here the first electron is located at r; = (1,0,0) and the coordinate of the second electron is
taken as r, = (x,y,0). The aim of KS-DFT is to establish the relationship between the
electron density (right; unnormalized) and the (exchange-)correlation hole (left). For [ =1,

the exchange-correlation hole looks like

[ =1 is an excited state, so that this is outside the scope of DFT strictly.

Returning to the main steam, let us continue the discussion on the exchange-correlation hole.
We can separate the exchange-correlation functional into exchange and correlation. This can
be done by using the pair density of the Kohn-Sham single-determinant ®[n] as

Na ks, 12) = n(rn(ry) + n(ron,(ry, r2)

The exchange hole can be written using the Kohn-Sham orbitals as
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2

N
n(r NG = = Y > ¢j0);(0)
J

ag

so that it is negative everywhere.

In weakly correlation cases, the exchange hole is much larger in magnitude than the
correlation hole in general. Therefore, the major task of DFT in those systems is to find an
appropriate functional form for the exchange plus relatively small contribution from the
correlation. In practice, finding the form for the correlation is much more difficult. Note that,
when using the above form for the exchange, which is implicitly the functional of the electron
density via the Kohn-Sham orbitals, one needs to try to find the correlation functional only;
when, on the other hand, when using a local (and approximate) value, one usually tries to find

the form for the exchange-correlation without separating it into pieces.

Adiabatic connection

Here I introduce the important technique called adiabatic connection, with which to
redefine the exchange-correlation. In my view, this is extremely important in connecting DFT
to formally rigorous many-body theories.

In this scheme, we introduce a path connecting between the non-interacting KS system

and the target system of interest while keeping the density constant. The density is kept equal

to the exact one. The Hamiltonian changes via the path as

A =T + W, + V4, (2.18)
where V7 is the external local potential operator playing a role to keep the density constant.
Note that the Hamiltonian is the Kohn-Sham one when 1 is zero and is the physical one when

itis 1. Along the line we have discussed, we can introduce the HK functional for each A.

FAn] = min(P|T + AW W) = (P2 [n]|T + AWee| ¥ [n]) (2.19)

This functional can be decomposed into
F*[n] = Ty[n] + Ef[n] + EX[n] (2.20)

with
n(rn(r;) _

H = Adrydr, = AEy[n], (2.21)
E2[n] = (®[n]|AWee|@[n]) - Ef[n] = 2E[n] (222)
EX[n] = ($M[n]|T + W [P [n]) — (@[n]|T + AWee| P[n]). (2.23)

The last equation can be used to derive

oEL _ _

0] _ g, 92— (00| ), @29

where the Hellmann Feynman theorem has been used. Then, we can derive

17



1
=f( n]|Wee| ¥ [n])dA — (@ [n]|Wee| @ [n]). (2.25)
0

Therefore, only the interaction energy (not the kinetic energy) contribute to the formulation;
we have thus successfully avoided the treatment of the kinetic energy part. We can further

rewrite the correlation energy as

fdzl ﬂ n(rl)n,;_(:.lrz)d ridr, (2.26)
or
ﬂ n(rl)nc(rl.rz) drdr, (2.27)
—1,|
where

fo(r1ry) = j dAnA(ry, ).

This indicates that it is the A-averaged density that needs to be handled. Later, I will show

that one can handle it using the fluctuation dissipation theorem.

Fractional number of electrons

With DFT, it is plausible if one can consider the system under finite temperatures, where
the system contains thermally excited state and thus the theory is no more a ground-state one.
It is also plausible if one can study a subsystem interacting with the host material, and in
addition, exchanging electrons with the host. Extension of DFT in those directions were
discussed in the past. I will briefly explain the density functional theory for fractional number
of electrons as a step towards those problems.

Let us denote the number as ' which is also writtenas N =N —1+ f with N € I and

0 < f < 1. The total-energy is described as

EY = minTr[[(T + Wee + V)], (2.30)

r

using the ensemble density matrix defined as
[=(1=IPV WY + fIPVPN]. (2.31)
(One may use many states with different number of electrons as well.) The variation is done
for N1 and WV, by which the ensemble density matrix is obtained as
Lo = = HIPY NP + fIPINHES |- (2.32)

Then the total-energy can be described as
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Ey' = (1—f)E{™" + fE.

From this definition, it is clear that the total-energy has a derivative discontinuity as

dEJ" {E{)\’ —E}Y-'=—IywhenN—-1<N <N

dv  |EVt1—EN = —-AywhenN <N <N +1

Usually, the ionization I and the affinity A, are different, so that the electronic chemical
potential dEJ' /dN = u is discontinuous at the integer number: This is called integer
discontinuity. Note that the fundamental gaps, or the HOMO-LUMO gap, is defined as

Iy — Ay = Eghp.

DFT for fractional number of electrons assumes existence of universal HK functional
F[n] = min Tr[F(T + Wee)]. (2.38)
-Nn

This can be decomposed, in the KS theory, into
Fln] = Ty[n] + Eypeel] (2:39)

where the Kohn-Sham non-interacting kinetic energy is given as

T,[n] = min Tr[[T],

s—n

'—J)E

and the ensemble non-interacting density matrix is

[y = (1= ) 1@V NSV | + floNT oM. (241)
The total-energy can also be described using the Kohn-Sham orbitals in a way very similar to
the one shown above, but here I show the resulting equations. By introducing partial

occupation number of each KS orbitals n;, the total-energy can be described as

N
E= Z n; f ¢:(T) <_%V2 + Vne (1')) ¢i (r)dr + EHXC [Tl], (2'42)
with the density
N
n(@) = ) il (243)

14
Note that the occupation number satisfies the condition that n; =1 for i <N —1 and ny =

f. The KS equation is thereby unchanged
1
(‘ SVt ns (ﬂ) ¢i(r) = & (r) (2.44)

SEHXC [n]

o) (2.45)

Vs (r) = vne(r) +

It should be reminded, however, the derivative with respect to the electron density becomes
ambiguous when change in the number of electrons is allowed in the formalism. Therefore

8 Eyyc[n] should be understood in terms of
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6EyxcIn
6EyycIn] = f (;%(;[)] + Const> én(r)dr (2.46)
and the change in the number of electrons should be carefully taken into account to determine
the constant, as will be shown in the next subsection. From the above equations, we can derive

oF _ 2.47
ani = &;. ( . )
This is called Janak theorem. Recall the Koopmans theorem of the Hartree-Fock, which is
similar to Eq. (2.47) but is different in that the differentiation is replaced by finite difference

in the Koopmans.

LUMO energy and the derivative discontinuity

From the Janak theorem, the derivative at a number slightly larger than an integer is,

N
(%if )M = elittio 254)
where the right-hand side is equal to the HOMO energy at N + 1-th orbital. Since Eq. (2.54)
is identical to the definition of the affinity, we have

eltto = Ay, (2.55)
This means that the affinity can be calculated using the HOMO energy. But, actually, this is
unrelated to the LUMO energy. To see it, let us write the HOMO orbital in terms of the KS

orbitals as
clisio = [ oistotry (~5 7 + 20 ofisotrrar. (256

The naive counterpart will be the LUMO energy of a system with a number slightly smaller

than N. The corresponding LUMO energy is

fLUMo = f¢LUMO(r) (“VZ + Uév 5(")) ¢LUMO(r)dr (2.57)

With decreasing § — 0%, v¥*%(r) and v)N=%(r) approach the potentials that are equal to

each other except for the additive constant, vN*%(r) — v¥=%(r) = AY.. Therefore,

efiomo = elumo + Axe (2.58)
holds. Namely, after taking the limit (§ — 0),
elumo = —An — ARe. (2.60)
This allows to rewrite the fundamental gap in terms of the derivative discontinuity as
Eglg\élp = &lumo — Eflomo + Ale- (2.63)

The constant appeared in the derivation of HK theorem thus turns out to be the derivative

discontinuity.
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Existing approximate functionals

There are many different functionals of different level of approximations. Usually, there is
a trend that the more complex the functional is the more accurate the result is, but this does
not mean superiority in all respects. A functional can be more accurate in one respect but is
less accurate in the other respects. Let us briefly survey popular functionals.

Local density approximation (LDA): The exchange-correlation of LDA can be written as
B[] = [ ()l ™™ (n(r)

¢ is obtained by doing a Monte Carlo simulation of uniform electron gas of a fixed electron

density. The result of the exchange-correlation energy is fitted to a form
1

3/3\3 1
-2 (5) M@ + ectima
Alnrs + B+ Crlnry,  whenr, <1j
=la b
e(r) =12 =7z when 1y > 15
s

1
where 7, = (i)g
4mn

Generalized gradient approximation (GGA): LDA is based on the uniform electron gas and
therefore is more accurate for a system having more uniform electron density. This means
LDA favors too much metallic systems over insulating systems and favors also condensed
phases over isolated phases like an atom. This is a serious drawback when comparing phases
of different electronic structure. It is also known that the adsorption energy on the surface or
atomization energy is too large and is outside of the required chemical accuracy. As a method
to overcome it, gradient of the electron density is incorporated into the functional. A natural

form for the gradient corrected exchange-correlation functional is obtained by expanding by

the dimensionless parameter Vn(r)/n(r)*/? as

2
ESEA ] = EPATR] + [ Gt V"(?) ar, (310)
n(r)3

The expansion parameter, however, can be large in some part of the target system making the

expansion breaks down. In this context, people have tried to construct a functional so that

ESGA[n] = f F(n(), Vn())dr. (3.11)

Note that LDA uses a local approximation to the exchange-correlation, in this sense GGA is
said to be a semi-local approximation scheme for the exchange-correlation. Some works nicely

at crystalline phases and others at surfaces, and so on. For details, please read the textbooks
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shown at the beginning.

GGA[#1] B88 exchange functional: Becke 88 was constructed to reproduce the nonlocal
exchange functional (Eq. (1.26)), such as the asymptotic behavior of the exchange energy

per particle and the value of the nonlocal exchange energy of rare-gas atoms.

GGA[#2] LYP correlation functional: Lee-Yang-Parr (LYP) correlation functional was

constructed based on an approximation of the Hartree-Fock pair density.

GGA[#3] PW91 exchange-correlation functional: Perdew-Wang 91 exchange-
correlation functional is based on a model of the exchange hole (Eq. (2.14)) and the

coupling-constant-averaged correlation hole (Eq. (2.29)).

GGA[#4] PBE exchange-correlation functional: Perdew-Burke-Ernzerhof exchange-

correlation functional is a simplified PW91.

Meta GGA: Meta GGA is based on the description of the functional using the second
derivative of the density and the newly introduced quantity 7(r) defined by Eq. (3.14).

Ege60A = f f(n@), n(@r), v2n(r), =(r))dr (3.13)

N
1) =5 ) 10 (I (319)

7(r) is constructed by the square of the KS gradient. This quantity is distinct from the local
functional of electron density and its derivatives. The ground-state energy can then be given
formally as

Ey = m(gn(cbﬁ' + l7ne|cl>) + Eylne) + Exc[ne, Tol-
Therefore, it is a slight extension of the original KS-DFT formalism. Meta GGA is generally

superior to GGA but requires dedicated basis functions or finer real-space mesh.

Hybrid DFT: Becke proposed to mix the nonlocal exchange energy, or the Hartree-Fock

exchange energy,

E)I;IF ZZf ¢m(r1)¢]a(r1)¢]g(r2)¢10( z)d rydrs, (3.18)

el

with the existing forms for the exchange and correlation, such as
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E3H = qEPY + bESSA 4+ (1 — a — b)ELPA + cESGA + (1 — ¢)ELPA. (3.17)

The most famous parameterization is known as B3LYP, which was constructed by using the

B88 exchange for the GGA exchange and the LYP correlation for the GGA correlation.
Another form is

EJH = qEHF + (1 — a)EDFA + EDFA, (3.19)

where DFA stands for any semilocal density functional approximation (DFA). The most

famous one is called PBEO where the fitting parameter was set to be 0.25. Hybrid DFT is

rather free from the self-interaction error. The mixing parameters, a to c, are determined

by comparing with the experimental data for selected matters: Because of its highly empirical

nature, the range of applicability should be limited. It is also noted that hybrid DFT generally

works for insulators but sometimes fails for metals.

Double hybrid DFT: Grimme constructed
EZPH = ayEHF + (1 — a ) ER™ + (1 — a )EQFA + a EX'™P?, (3.22)

where MP2 stands for the second order approximation to the correlation energy

N 2M 2
1 (Wit 1¥abn) = (il iba)|
MP2 _ _ — j1¥a i¥j a
B = 42 Z €t ep— & — & ’ (3.23)
ij=1ab=N+1
where the bracket appearing in the numerator indicates the Coulomb integral
Vi (r)Y;(r2)Ya (r)P,(r2)
(Wi o) = j As A o ;1'2| P2 dxydx,. (3.24)

Note that a and b is large than N indicating that unoccupied KS orbitals are included in
the formalism contrary to others introduced so far, where only occupied orbitals are included.
This way, the computation of the functional are becoming more and more demanding

although the accuracy is generally improving by that.

Range-separated hybrid DFT: likura, Tsuneda, Yanai, and Hirao proposed a long-range
correction (LC) scheme to assign different forms for the exchange depending on the distance

between the electrons as

long range, HF short range,DFA
Exf = E MRS 4 B2 BTN 1 EDFA,

The range-separation is done using the error function as

Ny . .
E)l(ong rangeHF _ _%ZZf ¢ia(r1)¢ja(r1)erf (ulry = r2|)¢ja(r2)¢i6(r2) drydr,,  (3.27)
o i

|ry — 12|

This is based on the idea that the error of the semilocal approximation to the exchange is

serious when two electrons are apart and the error is effectively corrected by the HF exchange.
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The cutoff distance for the range-separation needs to be introduced empirically.

Exact exchange (HF exchange)
In this scheme, the one-electron orbitals ¢;, appearing in Eq. (3.18) is not treated as an
independent variable but is regarded as a functional of the electron density n(r). That is, the
orbitals are treated as the solution of a KS equation where a (semi-)local form is used for the
exchange-correlation functional. The exchange potential thereby generated is the derivative
of Eq. (3.18),
SE, SE, SnGr")
sv.m) ) enG) ovs ) T

(4.2)

The derivative of the electron density can be obtained by using the definition of the response

function
) = on(r’)
oM T = S0
as
SE,
va(r’))(o(r’,r)dr’ =5 © (4.3)
S

That is, using the response function, change in the electron density with respect to the

effective potential is expressed using the KS orbital as

) — - ZNZ i I Binr Voo OB @)

& — &
o i=1a=Ngz+1 as lo

When this is used, we can derive the exchange potential using the two-electron integral as

Ng M
Ok B (M1, ()
O Z Z Z (Pac®ioltjodic) # teo  (46)

o ij=1a=Ns+1

This method for expressing the HF exchange is called optimized effective potential (OEP)

method.

Second-order Gorling-Levy perturbation theory
The Hamiltonian appearing in the adiabatic connection, H* =T + AW, +V*, is
decomposed using V* =V, — AV, — V4 as
A= (4 0) + AW — ) — 02,
following the second order expansion of V4 with respect to A, which starts from the second

order as V= /12[7c(2). Then the perturbation theory is applied to the KS state ®,,_, as
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&, |Wee — Vigg|®
|1p(1)>=_zlq)n)< | ;e x| n>’

—&
n=0 n 0

and this expression is inserted into Eq. (2.23)
E} = (WMT + Wo|[W2) — (®|T + W, | D)
to obtain the correlation energy by expanding it in powers of A. The result is
. . 2
|(¢|W§ee — VHX|¢n>|
Sn - 80 )

2 o~ o~ ~
B = (]| 90) = (@[ — |9 @) = = > |
n#0
It was found this does not improve the correlation satisfactorily, indicating that it is

necessary to go beyond the second order approximation.

There are so many types of approximation. As we have seen above, some of them are
introduced to approximate the HF exchange, which takes large computational time, with semi
local one, for which the computational time is generally much smaller. Others are introduced
to better describe the correlation functionals semilocally. In many cases, the accuracy has been
improved empirically in the sense that fitting parameters are introduced to better reproduce
experiments or accurate simulations. This idea is recently combined with machine learning
methods which enable to use much flexible fitting functions like neural network. Contrary to

this approach, there have been trials to derive plausible functionals theoretically.

Fluctuation dissipation formula

To derive the functional form theoretically, I will introduce the general idea of many-body
theories called fluctuation dissipation formula that relates the correlation described using the
pair density n,(ry,r,) with the fluctuation (¥W|A,(r;,r;)|¥) described by the expectation
value of the pair density operator. The fluctuation is known to be more easily evaluated than

the correlation when the fluctuation is described by using the response functions. Note that

this is a step toward combining the density functional theory with the many-body theory.

Density operator
To compactly describe the fluctuation dissipation theorem, let us introduce the density
operator without using the terminology of the field theory. The density operator is

defined as

N
() =) 80—

where r; is the coordinate of the constituent N electrons and r isa pointin real-space.
The density can be obtained as
n(r) = (Pl (r)|¥).
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The pair density operator can also be defined as

Ay (ry, 1) = A1 (r )y () — A (r))6(ry — 1).

Those are used to obtain

1
r=-> f V2, (r 7], dr
1 N
ee — Eff Wee(rl'rz)nz (1'1, rz)dr1dr2

Ve = fvne (ma(r)dr

To obtain the correlation energy using the adiabatic connection,
1 N ng (ry,r
E, = f AR (| Woe|92) — (| Woe|0) = f da ﬂ IZrC( 172 b e, (415)
0 1
we need the quantity
n%,c(rl, ) = n% (ryry) — Ny ks (ry,15).
Using the relations
n; (7'1»7'2) = <1p7~|n2 (7'1,7”2)'11"7\) (q"}\ln1(r1)n1(rz)|qﬂ\) 8(ry — rz)(q’}‘lﬁl(rlﬂ‘[’)‘)

Naxs(T1,172) = (P (r )AL ()| @) — () — 1 )( @A, ()| D) (4.16 — 4.17)

and the fact that the density is independent of A (by definition), we have
n%,c(rprz) = (q"}\lﬁ1(r1)ﬁ1(r2)|w}\) — (@[ (r )7, () | P). (4.18)

Now we relate the correlation function to the response function, i.e. response of the density

to the external perturbation. Equation (4.5) is a static response function

6 !
Xo(r', 1) = %

but it is more convenient to use a time-dependent one like
1ot
xo(r't,rt) = —?;Ezri))
and to consider the static limit. We need to remind that eq. (4.5) describes a response of the
non-interacting system. What we need is the response of the interacting systems
on(r't’)
8Vne(rt)

We must relate y with x,. For this purpose, we use a many-body Green’s function formalism

x(r't',rt) =

for the time-dependent Schrédinger equation: Afterwards we will return to the time-
dependent DFT formalism. So, let us introduce the many-body Green’s function formalism

for a while and then return to the discussion on the fluctuation dissipation theorem.
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Many-body Green’s function (article 2 of the references shown above)
We briefly introduce the many-body Green’s function following another article written by
Toulouse. For this purpose, we first change the language to that of the field theory. The

Hamiltonian can be rewritten as

~ ~ 1 ~ 1 ~ - ~ ~
= [ a0 (=57 4+ e )00 + 5 ] s B B G BB,

where v(ry,r;) is the Coulombic interaction 1/|r; —r,| and the term parenthesized in the

first term — % V2 + v, (1) will be denoted as h(r). Here we have introduced the field operator
P = ) i@,

which will be time-evolved using the Heisenberg representation as
P(1) = Py, 1) = eFiuap(ay e 0,
This is just a rewrite of equations but will help to make equations much simpler. I intuitively
note that the “physical” Green’s function is the retarded one but “convenient” Green’s
function is the time-ordered one; there is a way to make the former from the latter. The time-
ordered Green’s function is given for an N electron system by
i6(1,2) = (N|T[¢(DPT(2)]|N)
(N[$(DPt(2)|N) when t; > ¢,
- {—(N|1/3*(2)1[7(1)|N) when t, < t, @
Here operators are ordered from the more past ones to the more recent ones. The Green’s
function follows the equation of motion
2
(i% + %) G(1,2)=6(1-2) - iz v(3, 1) (N|T[¢T )P B)P()PT ()] |N).
o3

This can be derived as follows:
First, consider the equation of motion of the field operator, which is

oP(1)
at,

—jelflt: [IIJA(xl), ﬁ]e_iﬁtl.
By calculating the commutation relation, we get
[5G, ] = hr)b ) + [ dxy 9t e)v(n, )b )

and then

aP(1)
at,

This can be used to take the time derivative of the one-body Green’s function as

)P — i f B3PR)v(L)PR)B(L).
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d P (1) ~
=—G(1,2) = 80t — )N FDFT @IN) + 6, — 1) (N| 2L gra|w
1 1

= 8t — ) (N[B @BDIN) - 6, - 6) (V|12 —6‘5’8 |

This can be simplified as

i2 6(1.2) = 5(1,2) + R(DG(1L,2)
ot

—i f A3 0(13)[0(E — NPT EPEBWGT@IN) - 62,
— t) (N[PT(2PT3)P B3P (D)|N)

Using the definition of the two-body Green’s function as will appear below
26,(1,2;1,2") = (N|T[P(MP)PT (19T (2)]|N),

further simplification is possible and the result is

d
156(1,2) =46(1,2) +h(1)G(1,2) + if d3v(1,3)G,(1,3%;2,3%%),
1

where time is ordered as t3* > tF > t; and the difference in the time is infinitesimal.

The one-body density matrix can be written as

ny (x4, x3) = (N|1/3T(x2)1z’(x1)|1v) = —iG(xty, Xt)). 3)
and the one-body electron density as

m(r,ry) = =i ) G0t 1,0t)). @
o

The Green’s function can be rewritten using the completeness relation of N + 1 body states

as

iG(xy,%5,7) = H(T)Z(Nllf)(xl)lN +1,a)(N + 1, alt (x,) |N)e 1 (Ensra=En)t

—6(~1) Z(N|z/3f(x2)|N —1,a)(N — 1,a|(x,)|N)e {Ev-En-1a)T (5)

so that the Fourier component is

B (N[Pp(x)|N + 1,a)(N + 1,alpT (x,)|N)
G x, 0) = Z ®— Engrq+ Ey +10°

a

(N[PT(x)|N = 1,a)(N — 1, a|p(x,)|N)
+Z w—Ey_14+Ey—i0*

a

This is called the Lehman representation of the one-particle Green’s function. It is simply

rewritten as
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Ll ) | A )
= + ©)
— W

w+ A, +i0* —I; —i0*’
a
where the affinity and ionization potential has been used. The function f appearing in the

denominator is called as the (quasi particle) wave function.

Linear response and response function
At this moment, let us definite the linear-response function. For this, we will consider

a system applied with a perturbation like

qH ) = f AV (1, t)dr

and evaluate the expectation value of the density. We can use the equation of motion for
the time-evolution operator in the interaction representation

L0U(t, to)
1—

o = 11U to)

which is solved as

t t
Uit ty) =1 —i| dt' B, () =1—i | dt’'eifot' H(¢")e Aot

to to

Therefore, the expectation value of the density is given as
8n(rt) = (U] (& t) A (r)Uy (&, o).
The terms linear with respect to the perturbation is
t
on(re) = i | dt' T4 ([, (rt), Ay (X' )] Wer (', £)

to

The response function is thus given by the density-density correlation function as
x(rt,r't") = K[A,(ro), A, (r't)]).

Here the subscript I may be regarded as the Heisenberg representation. Depending on

the boundary condition, we can make the causal or time-ordered response function. Note

that this is a plausible extension of the static definition fi,(ry,r,) = A;(r)A,(r,) —

A (r)8(ry —ry)

One can likewise introduce the two-body Green’s function as
i2G,(1,2;1',2") = (N|T[p(DP)PT (19T (2)]|N), (7)
which describes the propagation of a pair of particles; electrons, holes, or electron-hole. A
related quantity called four-point linear response function is defined as
ix(1,2;1,2") = 2G,(1,2;1,2") — iG(1,1)iG(2,2"). (8)

For a special time-ordering relation, it can be rewritten as
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IX(ltzl xlltf'XIZt;)
= (N|T[PT AP WPT2HP(2)]|N)
— (N[PTANPO|NUN[PT@IP@IN),  (9)
and the Fourie transformed equation is then given by
x(x1, x2; X3, X35 W)
B z [(Nltﬁ*(l')zﬁ(l)lzv, n)(N,n|p*(2)9(2)|N)
B w— (Eyn — Ey) + (0%

n#*0
(N[$1@)P@)IN, n)(N, n[pt A)PD)|N)
- . (11)
w + (Eyy — Ey) — i0*

This indicates that the four-point linear response function in this special time-ordering
corresponds to the linear-response of particle-hole pairs.
One can further introduce the independent-particle four-point linear-response function
rp(1,2:1,2") = —iG(1,1)6(2,2") (12)
and the corresponding response function

xip (X1, X5 X1, X5 T) = —iG (X1, X5; T)G (X2, X35 —T) (13)

10 (s, 203 0 X3 @) = Z [ﬁ*(x'l)fa(xl)fd*(x’z)ﬁ(h) ST fa(x) fd () fi(xa) 14

— <. 0+ — ) —i0t
o e (E,—€)+1i0 w+ (E,—&)—i0
Having introduced the many-body Green’s function, let us return to the discussion on the

fluctuation dissipation theorem. The response function (Egs. (9-10)) can be written as

A (rity, maty) = (WA T[AA (it )AM (r,t,) ] [$2) — (WA T[AA (rot) || NP2 T [A2 (ryt2) ][ 92)

= (P T[A (ry t) AR () [|PA) — (P A |PANPA Ar,) | PH) (4.19)
If we set t, = t; + 0%, the Heisenberg phase factor is canceled out and
ixa(ry, 725 T = 07) = (YA DA W) — (WA A ) [P AG) [Ph). (4.20)
It is possible to derive similar equation for A = 0, giving
iXo(ry, 7237 = 07) = (DRAE)AE)I®) — (DIAGDIONDIAGE)IP).  (421)

This makes it possible to write the two-body density correlation in terms of the response

function as

n%,c(rprz) =i[x(ry, 1t =07) = xo(ry,r;7=07)], (4.22)

and using the Fourier transformed form as

OOdou .
n%_c(rl,rz) == f Z—mel“’°+ Da(ry,re w) — xo(ry, 125 )], (4.23)

which is known as the fluctuation dissipation theorem. When this is combined with the

adiabatic connection formula, we get
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1 [e)
E = 1 i fd—wei“’0+ ff)(&(rlyrz;w) — Xo(11,T3; w)
¢ 2 [Ty — 1]

—00

- dridr,
This is a particularly important formula which provides a practical way to compute the
correlation functional without the many-body wave function.

The problem is now reduced to the evaluation of the response function y,. This can be
done either by using the time-dependent DFT or the many-body perturbation within the GW

approximation. For the moment, let us concentrate the former.

Time-dependent density functional theory (TD-DFT)

To explain the response function within DFT, [ will briefly introduce TDDFT. According
to Runge and Gross, there exists a one-to-one correspondence between the time-dependent
density n(r,t) and the time-dependent effective potential vg(r,t), so that n(r,t) can be

obtained by solving the time-dependent Kohn-Sham equation:

.0 1
00 = | =37 + 00| 00,

and

N
n(r,0 = ) lg:r, 0P

This is a natural extension of the Kohn-Sham DFT.
According to the many-body theory, in the linear response regime, the change in the
density and change in the external potential can be related via the response function as

[o¢]

Sny(r,t) = j dat’ j ar' y,(rt,r't)svli . (r't")
0
where
én(rt)
e r't)y=———
dvgxt(r’t’)
the response function can be given (from the definition) as

e = [<‘*”|ﬁ<r>l%><‘*’%lﬁ<r'>|W> (|G| AN AR

w— Wy, +i0* B W+ w, +i0*
m#0

In TDDFT, the equations are replaced by those of a noninteracting system

o]

Sn(r,t) = f dt’ f dr' ks (rt, PEEVAE ),
0
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Sn(rt)

rt,r't') = ———,
XAKs S5vA(r't")

and

, o (Mo} el i)
X)L,KS(rlr ) a)) = Z ;
W — Wj + 11
kj
The effective potential, v(r't’) = vA,('t") + vu('t) + vi&(r't"), is related to the density
via the exchange-correlation kernel K as
Svi(rt)
Ki(re,r't") = ———=,
T = S

so that

on(r't)

1] + [dr'dt'Ki.(rt, r't)on(r't")

8vd(rt) = svl, (rt) + [ dr’

Since the same density response results in both cases, we get

5(ty — t3)

)(/'l(rt, T’t’) = )(;\,Ks(rt, T’t,) + fjf X/l,KS(rt: rltl) [m + K)?E(Tltl,rztz) X2 (rztz, T’t’)

Namely, once functional form for the exchange-correlation kernel is determined, we get the
response function, with which one can calculate the correlation functional. The problem has
not been solved by this, instead, the problem has been transferred to the construction of K2,
which is practically easier. Also, there is a way to construct it from a rigorous many-body

theory.

Let us then introduce the many-body theory for constructing the response function. Again,

we will follow the article written by Toulouse.

Self-energy

Returning to the equation of motion, which was derived above as

1%6(1,2) = 5(1,2) + h(1)G(1,2) +i j d3v(1,3)6,(13%23"),  (15)

let us introduce the self-energy operator. For this purpose, let us assume that we can find a

solution for the following equation

f 435, (1,3)G(3,2) = —i f d3v(1,3)G,(1,3+: 2,3+ 17)
or equivalently let us introduce the following quantity

Tie(L,4) = —i f d3v(1,3)G,(1,3%:2,3*)61(2,4). (18)
Then, we obtain a formally closed form for the Green’s function
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9
[ia—tl - h(l)] 6(1,2) = 6(1,2) + j d3%41,.(1,3)G(3,2). (16)

This means that with the self-energy (Eq.(18)) we do not have to introduce the complicated
multi-body Green’s function.

Note that Green’s function is given for independent electron approximation as

[ia% ~ (D) Gnaep (1.2) = 612 (19)
Using G(1,2) = [ Gingep(1,4) Gintiep (4,3)G(3,2), we get
f d3[Gintep(1,3) — Zuxc(1,3)]G(3,2) = 6(1,2) (20)
This is rewritten as
6(12) = Gindep12) + [[ Ginaep (13) Zuee (3G 42), 21)
or as
G7'(1,2) = Gingep(1,2) — Zrxc(3,4). (22)

Equation (21) is known as the Dyson equation for the one-body Green’s function.

Fourie transform is (assuming homogeneity of the system with respect to time) given as

[w = h(D]G(x1, X35 @) = §(x4,%;) + J dx3Zpxc (X1, X35 0) G (X3, X5; ) (23)

Using the pole €, and the wave function f(x) of the Green’s function, we can rewrite Eq.

(23) at the pole as

[Ex — hrD]fi (e fi (x2) = de3 Zhxe (X1, X35 ) fie (x3) fie (x2) = 0, (24)

when there is no degeneracy. This can be further simplified as

R fe() + j s Be (1, 2 €0 (X3) = Exfi (). @5)

If the imaginary part of the self-energy is zero, Eq. (25) is equivalent to a one-particle
Schrodinger equation. Because of the imaginary part, however, it becomes similar to the
equation with absorption potential, indicating decreasing amplitude of the wave function with
time. It is known in some cases that the imaginary part is small for the energy states close to
the Fermi level. So, Eq.(25) is called quasiparticle equation.

Note that the self-energy is apparently equivalent to the exchange-correlation potential of
TD-DFT. It is therefore possible, in principle, to derive the exchange-correlation from the

many-body theory although it is determined from empirical argument.

Exchange-correlation kernel from first principles
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1. Green’s function using the interaction representation

Suppose the system is perturbed by an external field u(r), or

H'(t)) = fdlu(l)n(l).

The Green’s function can be described using the interaction representation

(N[T[SpPTA]|N)

CA) = sy

where S is the time-evolution operator in the interaction representation
ta
S(ty, tp) = exp —if dt;H';(1)|; S =S(—o0, ).
tp
The two-body Green’s function is also

(N|T[spP@P P AH]|N)
(NIT[S]IN) ’

G,(1,1;2,2") = (-i)?

similarly to the one in the limit of u — 0.
2. Equation of motion
The Green'’s function follows an equation of motion
0
[i% ~h(1) - u(1)] G1L1") + i f d2v(1,2)G, (1,1, 2%, 2+%) = 8(1,17).
1
When the Green’s function is differentiated with respect to u, we get the equation known as

Schwinger’s trick

66(1,1'

% =—G,(1,1,2,27) +iG(1,1)G(2,2%) = —G,(1,1',2,2%) + iG(1,1"){A(2)).
With this, one can formally remove the two-body Green’s function from the equation of
motion:

d 6G(1,1")

s _ _ A~ A + 7 12

15~ h(D —u(1) f d2v(1,2)(n(2))] c(11) —i f d2o(14,2) 5 o = 5L,
As we did above, we can define the self-energy operator

6G(1,3
Z(1,1) = dev(l,Z)(ﬁ(Z)) 6(1,1) + ij d23 v(1t,2) 511((2))6_1(3'1,)

=JH(1,1) 4+ 2*(1,1")

so that the equation of motion can be rewritten as

[ia% — h(1) - u(l)] G(11) — if d22(1,2)G(2,17) = 5(1,1").

When unperturbed Green’s function is defined from
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[1— - h(l)] ¢®(1,1) =6(11),
we have the equation of Dyson type

G(1,1) = G(°>(1,1’)+f d236©(1,2)2(2,3)6(3,1).

3. Self-energy
The self-energy operator has a form difficult to understand. Let us relate it physically
understandable quantities. For this purpose, we define the total potential as a sum of the

external potential and the Hartree-potential

V(1) = u(1) +fd2v(1,2)(ﬁ(2))

and consider the response of the Green’s function to the change in the total potential;

5¢(L2) ra,z2s3
— — '_) .
6V(3) ( 1=y )
The vertex function I'(1,2;3) can be rewritten in a Dyson form as
§2*¢(1,2)
5G(4,5)

so that one may start the first order approximation from §(1,2)6(2,3).

I'(1,2;3) =6(1,2)6(2,3) + ﬂ d4567 G(4,6)G(7,5)I(6,7;3),

With the vertex, let us remove the unpleasant §/8u operator from the definition of the

self-energy. The exchange-correlation part can be rewritten as

8V (4)
su(3)

Using the fact that the change in the total potential induced by the external potential is the

2*¢(1,2) = 1-[ d3456v(1*,3) —==G(1,6)I'(6,2;5).

dielectric function

v (s)

6u(3)

and the fact that the dielectric function operated to the Coulomb potential is the screened
Coulomb

e 1(4,3) =

W(1*,4) = Jd3 v(1*,3)e"1(4,3)
¥XC¢ can be rewritten as
$X(12) = i f d56 W (1*,3)G(LE)(62:5).

To remove the §/8u operator from the screened Coulomb, it is rewritten as
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5G(4,4%) 8V (5
W(1+,2) = v(1+,2) + f d34 v(1+,4)%vg3§v(3,2)
5G(4,4Y)

SV (5)

§(p(2))
sV (5)

= p(1+,2) + f 34 v(1*,4) W(52)

= p(1+,2) + f 34 v(1*,4) W(5.2)

and then, the derivative appearing in the last line, which is the polarization, is rewritten using
the vertex function as

§G1(3,4)

P(12) = in34 G(1,3) V2

G(41%) = —i jd34 G(1,3)G(4,17)r(3,4; 2).
Then, we can obtain a Dyson equation for the screened Coulomb as
w(t,2) =v(1%,2) + f d34 v(1*,4)P(2,5)W(5,2).

4. Hedin’s equation
Finally, we arrive at a closed set of equations called Hedin’s equation
G(1,2) = G°(1,2) + [ d34G°(1,3)2(3,4)G(4,2)
¥X¢(1,2) = i d34W(1+,3)G(1,4)I'(4,2;3)
P(1,2) = —if d34 G(1,3)G(4,11)I'(3,4; 2)
W(1,2) = V:(1,2) + [ d34V-(1,3)P(3,4)W(4,2)
§TX¢(1,2)

r(1,2;3) = §(1,2)8(1,3) + [ 4567 sy

G(4,6)G(7,5)T(6,7;3)

By self-consistently solving them, one can rigorously obtain the Green’s function. When the
vertex function is approximated as the product of delta functions, it corresponds to
approximating as £*°(1,2) = i d34W(1%,3)G(1,4). This is the reason why it is called the GW
approximation. This approximation also means to taking P(1,2) = —if d34 G(1,3)G(4,1%),
which indicates two particles are propagating independently. As a higher order approximation,
one can use the first order approximation

5T%¢(1,2)

8G(4,5)

to obtain the polarization. The resulting set of equations is called the GW + Bethe Salpeter

r'(1,2;3) = 6(1,2)6(1,3) + [ d4567 G(4,6)G(7,5)

equation.

To describe the equation, it is convenient to use the four-point response function defined
above
¥(1,2;1,2) = L(1,1,2,2") = iG,(1,1,2,2") — G(1,1)G'2', 2).

It can be derived by Schwinger that this quantity is given as a response of the Green’s function
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G(1,1") perturbed by a nonlocal external potential u(2,2) as

L(1,1,2,2") = 361
L) =TS22
Using the identity of the functional derivative,
OFALL) _ fF(l 3) 6F_1(3'3’)F(3’ 1)d3d3’
56(3) ’ 5G(2) ' '
we obtain
S6(LL) _ fG(l 3)G(3' 1')8G_1(3’3’) d3d3’
su(2,2) ~ ’ 7 du(2,2) '

When this is substituted into the Dyson equation
G7'(33) =G;'(33") —u(33) - 133",

We obtain
8G(1;1’) , o 82(3}3!) ,
811(2,2’) =G(1,2)G(2",1) + f G(1,3)G(3',1 )mdgdg
, N XL C L S
- dueE U J CA36E )SG(4,4') 8u(2,2") d3d3 dads

The first term in the left-hand side, or the product of the Green’s functions, is regarded as the
four-point response function within the independent pair approximation. Therefore, it will be
denoted as Ly(1,1',2,2"). The second term contains the derivative of the self-energy, which

will be denoted as

. 82(33Y)
K(3,3 ,4,4 ) = lm.

This quantity is the electron-hole interaction kernel because it relates the non-interacting

response function with the interacting one as
L(1,1,2,2") = Ly(1,1,2,2") + J Lo(1,1,3,3")K(3,3',4,4")L(4,4,2,2")d3d3'd4d4’".

The kernel K can be decomposed into the Hartree and exchange-correlation contributions.

The former

8zH(3,3)
X '"ANN =~ 7
K*(3,3',4) =i G044

is called bare Coulomb exchange interaction and can be described as
K*(3,3',4") = 6(3,3")6(4,4")v(3,4).
While the latter is given within the GW approximation as

5297 (3,3") sW(3*,3")
. — oAl + 2 _ ’
isaaay = “SBMOE AW G — 6B raTn

The functional derivative, the second term in the right-hand side, can be removed by using
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the polarization, W = v + vPW, which provides the relation §W/5G = W §P/5GW as

526 (3,3") 5P (5,6)
———— = = —5(3,4)8(3,4)W(3*,3) — | 6B3IW(3*,5) ——= ' .
SsaT = ~0BAE AW E3) - [ GBI S) s W(63)d5ds
Using the approximation P = —GG,
BE3Y 5(3,4)6(3',4HYW(3%,3")
"Tscaaay T O ’ '
8(G(5,6)G(6,5M))
. ’ + l
+1fG(3,3)W(3 ,5) 5Cad) W (6,3")d5d6,
and further,
82" (3,3") .
Scas) - —-5(3,4)6(3,4YW(3+,3") +iW(3,4)G(4',4H)W(4,3")

+iW(3*,4N6(4',4MH)W(4,3").
The first term is called the direct term, and the second and third terms are called second-
order correction terms.
K*(3,3',4,4") = 5(3,3)5(4,4")v(3,4)
K9(3,3',4,4") = —6(3,4)6(3'4)W(3*,3")

a W (3,3%)

K'(3,3 44D — n_—=- 7
€330 Se@a)

It is important that this GW + Bethe Salpeter equation can be rewritten using the Kohn-Sham

orbitals as basis. The resulting equation is formally the same as the response function

appeared above in TD-DFT,

6(t; —ty)
xrt,r't") = ys(rt,r't") + J_U Xrs(rt,rity) [ﬁ + Ky (rity, raty) | x(rpty, r't").
1

When we take the standpoint that the response function is given as a functional of the electron
density through the KS orbitals, this is a density functional theory with advanced form for the

exchange-correlation.

Direct random phase approximation
Let us go back to the density functional theory again. One of the crude approximations to
the response function was to take the direct term only, which is within the adiabatic
connection path
Klf}xc(rp Ty w) = K{}(rl,rz) = Av(ry, 12). (4.28)

When this is used, the resulting equation for the response function is

X, 0) = xo(ry, 12 0) + Af_ﬂ Xo(ry, 13 0)v(1s, 1) XA (T, T2 ). (4.29)
By this we can define the correlation functional within this approximation called direct RPA
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as

11t “dw 7,13 0) X0 (T, Ty
EgRPA=——f d/lf o -iw0* Afff)(o( T3 0) )X (T T )drldrzdrgdm
2 J o 2mi ¢ —13llrs — 74l

422 ﬂ:[ Xo(T1, 135 0)xo (T4, T5; @) X0 (16,725 )
[Ty = 7allrs — rullrs — 16l

dridr,dridr,drsdrg

1 (430)

Practical formulation of dRPA
Equation (4.29) can be expressed using the four-point response function as
ixa(xq, x5, %7, x5; 7)
(lpllT fif (g, x5 t)A] (x5, 255 t5)] |lP'1)
— (WA (g, x5 ) [PANPA AL (g, 255 £5) [P 4). (4.34)
Within dRPA the Dyson equation for the response function is

dRPA
XA (xll

= Xo(x1, %2, X1, X5; )

! !
X2, X1, X3; (1))

+.U dx3dx4dx5dx6)(0(x1,x4,x’l,x3;a))KI_)f(x3,x6;x4,x5))(fRPA(x5,x2,x6,x'2;w) (4.36)

with the kernel being given by
K]i}(xl,xz,x’l,x’z) = w(|ry —rD6(x; — x'1)6(x; — x'3)
Note that the non-interacting kernel can be given by the KS orbitals as

Vo b; (X)) Pa(x)Pa(x5)Pi(x2) P (x3) o (x2) g (x1) P (x1)
Xo(X1, X2, X7, X5, w) = Z _

) w— (g, — &) +i0* w+ (g, — &) —i0*F
iIsN<a

Now we take a basis representation. The basis is formed using the combined occupied and
unoccupied orbitals as

fia(x1,x1) = ¢; (X1)a (1)

fai (%1, 21) = g (x1); (x1).

Then y, can be expanded as

X0, 22,20, %5 0) ) olpafy (o, X0 f (2, %2)
pq

where
Sijaab
— (g4 — &) +i0*

8ij6ap
[Xo(a))]ai,bj = W+ (ga — g.) —i0*

[Xo((‘))]m bj = [Xo((‘))]al]b =0.

[XO (w)]ia,jb = ©
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Therefore, in a matrix representation

_ A 0 1 0
W@ ==(F ) -@(p 1)l (4.39)
with
Agig jp = (eq — €)6i04p-
Then
drPAY"1, y _  [(Ax Bz)_ 1 0 ]
0 @ == | ) -e %) (440)
with
(ADiajb = Déiqjp + HaPj|ip)
(Bia,jp = Mda®p|Pi;)- (4.41)
To take the inverse in Eq. (4.40), we solve the generalized eigenvalue problem
Ay B\ (Xn2\ _ /1 0 (Xn,/l
(Bi A3> (Yn,a) =wi(p 1) Yn,a) (4.42)

Under the normalization condition for the eigenvectors (X ,Y), the response function is

dRPA[, \ _ 1 I 2. ¥ yrt
oz (w)_zn:[a) wn+10+( >(X /1) o+ o} 10+< >(X Yna ]’

and the correlation part of the two-body density matrix is then
“dw Y*_/ly*-rl Y*,AX*+A 00
np = - [ SR e (@) - xo(@)] = ). ( R B G
—~ [\Xna¥n1 XnaXna
Therefore, the correlation functional is given by

2mi
EARPA — f a2 > (iul$a) ar)iy (1), + (B15110ab) (Xna) ;OO0

ijsN<ab n

+ (Pa|0:6)) (Xn);y (fn2) , + (@100|$ats) | (Oia(Kna) , = 8110 |

This is the formulation within the direct RPA. There are other formulations as well depending
on how the A integration is done efficiently by introducing approximations/assumptions.

Most of the dRPA calculations are done non-self-consistently using a lower-level electron
density although self-consistent calculation can be done using the optimized effective
potential scheme. With this, we can incorporate the van der Waals interaction. Yet, this
scheme is not free-from the self-interaction, that will affect insulators more significantly. To
overcome it, one can add the exchange to the direct term as

K&xc("l:rz; w) = Klzl\x(rllrz; w) = Av(ry,r3) + AK (11, 135 ).

This approach is found to correct the problem only minorly. It is thus necessary to go beyond

the RPA approach by adding terms that include the vertex correction.
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Linear response within classical statistical physics

Here I discuss a theory of density correlation for a classical many-body stem to be
compared with DFT. The method is based on the standard statistical physics of a grand
canonical ensemble. We start from the Ornstein Zernike (OZ) equation. For detail, please

read the article written by Prof. Sato, (http://j-molsci.jp/archives/AC0004.pdf).

We now see how the correlation factors are described in a classical system
(a) fluctuation and correlation

Let us define the density operator

N
on() = ) 6 —7) —ny,
i=1

where n, is the density averaged over the whole system. The average of én(¥) over the

ensemble is zero, or

N
() 8G =) = o,
i=1

The density fluctuation can be written as

N N N
On@on) = () 8G =7 Y 8(F = 7)) = 20 () 8~ 7)) + 13
i=1 =1 i=1

N N

=) G -R)OE —FN+( ) 6G -7 8(F ~ 7)) 3
i=1 ij=1,i%]

=nyd(7 —7') + ndg(# 7)) —né = nydS(F —7') + n3h(#,7")

where g is the pair correlation function

N
gFFN=(C Y 8GE =) 8(F - 7))
Lj=1i%]
and h is called as the total correlation function (two-body density matrix over square of the
particle density)
h(# 7)) = g@ 7)) — 1.
Note that similar quantities have been discussed above although the naming is somewhat

different. (n2h(#,#") & ny(r,1"))

To relate the correlation with the response function, it is convenient to introduce a functional
derivative scheme. In the first step, let us relate the correlation with the partition function.

(b) grand partition function and grand distribution function
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Then, we focus on the grand partition function. For a system described by the Hamiltonian,

H = Zz 2 4 Uy(1,+,N),

the partition function is written as, using the thermal de Broglie wave length A=

h/\/2mrmkgT,

5= i fffﬁexp[—ﬁ(UN(l,---,N) —]d( .. N)

Eﬂ 1 &xXP=AUN(L, -, )] d(1 ... N),

z =A% exp(Bp),
and the m-particle distribution function (classical analogue of the m-body density matrix) is

where z is the activity

given as

nm(1, -, m fo d(1.. N)—exp[ pUN(L, -+, N)]

x zz Z S(L—#)8(2—7) - 8(n— 7).

i j#i k#i,j,
This can be rewritten as a sum of multiples of the canonical partition function Z, and the

canonical distribution function n(m)

o

1
(L, m) = 2 mzN ng” (1, -+, m)
N=0

Note that

(m) bk
jj d(l ...N)nNm (1,,771) = m

Now that the correlation functions are given in terms of the partition function, let us consider
the functional derivative method.
(c) Functional derivative

When the potential energy consists of the external potential and the rest as

Uy(1, -, N) = Z V@) + Uy (1, N)

the grand partition function can be written using generalized activity
z(7) = zexp[—pV (7]
z(i) = zexp[—-BV (7]

as
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E= Ef_ﬂN'( Z(L)>exp[ ﬁ(U’N(l N))]d(l .. N).

When this is differentiated by z(#), we get

. N
SZ(r) ZWN.ZEZ((Q) jLLZ(i) exp[—B(U'y(1,++,N))]d(1...N)
:im%Z‘Wi—f’) ﬁ 2(j) |exp [-BU'y(L,,N)]d(1 ... N)
N=0 i

Jj=1,j#i

ZHJ(N D! N Z(I) exp[—B(U' v 2.+, N))| d(2 ... N).
j=2

Comparing with the above equations for the distribution functions, we can show

7) 8 §InE
E 8z(r) &8lnz(¥)

snW(#) - snW(#)
8z(#)  8lnz(#)

n@ @7 = 2(#)

Note that §lnz(#) = —p8V(#), so that

snM(#)
4GB

This is a fluctuation dissipation theorem in the sense that the two-body density is related to

n@(F7) = —kyT

the response of the density to the local potential.
Let us then consider inverse of the response function
snD(#)
v -
This should be the inverse of the non-interacting response function minus the interaction
kernel. When no interaction exists,
ng” (7) = exp[~BV ()],
so that
V(@) 6 —7")
snOE) W)

YOG = -

Deviation from this is the result of the interaction, which will be denoted by K(#,7') as

Sinz(®) SV 8-
snW@E)  TenW@E) T @)

l#FF) = K@F 7).

When we use the chain rule
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snM @) Slnz(F") .,
= S—=0(r—-1"
SInz(#") snWF")

we get
‘F” _ rl)

6
J(n(r)fi(r —7") + n(@®hF 7" )n (*”))< ( )

K(#", ?’)) " =5§(F =7,
and further

n(®h(@, 7)) —n(@KF,7") — n(@) j h(@, #n@E K@, 7)) dr" =

h(#,7") — K@@ 7") — f (@, 7 n(@FE K@, 7)) dr" =

which is the OZ equation to relate the inverse of the response function with the density
correlation via a Dyson-like equation. Note that this derivation shows that OZ does not
require a pair-wise interaction. When the interaction kernel K is given as a functional of the
density n(r) using the DFT for classical particles, the correlation h is determined. In the
classical DFT, there are known approximate and explicit relation of K and h when the
particles are interacting via a two-body force. The relation is called as a closure and the famous

ones are the hypernetted chain closure and the Percus-Yevic closure.
Nonadiabatic coupling of electrons and nuclei (ions)

Here we consider the whole system, consisting of electrons and ions, quantum mechanically
although ions have been treated classically so far. We will go beyond the Born-Oppenheimer

(BO) approximation here. By the way, what was the BO approximation?

BO approximation is explained as originating from large difference in mass between an
electron and a nucleus; even for proton the ratio is 1/1700. For heavier elements, the ratio
amounts to that of Earth over Sun. It is no wonder to decouple the motion of nuclei from that
of electrons. Even though BO approximation will be generally valid to first order
approximation, there are phenomena related to breaking down of BO approximation. Such

occurs for chemical reactions, electronic friction, and so on.
Now let us discuss it quantitatively using the BO theory.

As the starting point, let us consider the system with
h? h?

H=—-——V%——V?
AL ™ +V(R,7)
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where an electron with coordinate r and mass m and a nucleus with coordinate R and mass
M is interacting via V(R,r). The time-dependent Schrédinger equation is

ihd,W(r,R,t) = H¥Y(r, R, ¢t).

When M > m, naive approximation is to neglect the first term in the Hamiltonian and treat
the nuclear coordinate classically. It can be also assumed that the nuclear velocity is much
smaller than the electronic one, by which the electrons will have enough time to deexcite to
the ground state via coupling to environmental degrees of freedom, like electromagnetic field,

phonon, and so on. In that case, one need to solve a static equation

_ h?
Hy(R@®) = - Vit V(r;R(®D))

ﬁelqjel(r; R(t)) = Eel(R(t))Lpel(r; R(t))
where E,;(R(t)) is the ground state energy of electrons for a given configuration of nuclei,
which is usually called the BO potential energy surface. The classical nuclei will evolve with

time according to the Newton equation

MAZR(t) = —VRE,(R(1)).

Let us derive this more formally. To do this, we prepare a complete set of the electronic

Hamiltonian and expand the whole wave function as
lp(r' R! t) = Z ){n(R, t)lpn(r; R),
n

where

Hapn(r; R) = Eo(R)Yn (15 R).
Note that the nuclear coordinate is treated quantum mechanically through the nuclear wave
function y,(R,t), which is introduced as the expansion coefficient. 1, (r;R) is time-
independent and is given as a function of parameter R; time-dependence is considered only

through y.

The nuclear wave function follows an equation of motion, which can be straightforwardly
obtained by applying the whole wave function into the starting time-dependent Schrodinger

equation

2

h
ihatXm(R: t) = [_mvlz? + Em(R)] Xm(R: t)

h? h?
2 ) VR P Vtn (RO = 5o > Wl VRt RO (D,
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When the first term in the right-hand side is larger than the second and third terms, the
nuclear wave function of m-th excited state y,,(R,t) follows quantum equation of motion
given by the corresponding potential surface E,,(R). Then y,,,(R,t) can be regarded as the
wave packet. The centroid of y,,(R,t) follows the Newton equation. This corresponds to the

BO approximation.

Because of the second and third terms, the nuclear wave packets are interfering with each
other. The BO approximation thus breaks down. The second term represents a coupling
through the first-order nonadiabatic coupling (NAC) vector

(lpmlvR |lz[}n)
and the third term represents the coupling through the second-order NAC (1,,|V2[1,,).

The first-order NAC vector can be rewritten as

(Y| (VRH) [1h)

Wm|Veln) = —F 5 -

This indicates that NAC should be very large when there is a degeneracy of the BO surface.
When the numerator is non-zero, the coupling diverges at the degenerate point, which is
usually called as crossing point. The BO surfaces generally looks like a Dirac cone of graphene
because of linear behavior of the BO surfaces. Therefore, the crossing point is sometimes
called as a conical intersection.

The breakdown of the BO surfaces can happen at the crossing point even when the nuclear
mass is large. For metals, the crossing should occur. For example, when a charged particle
approaches a metal surface, the ground state will be mixed with excited states though which
energy transfer occurs from the particle to the surface. The particle is then decelerated. This
phenomenon is called electronic friction. This contrasts the friction generally occurring for

insulators, where the energy transfer occurs from the particle to phonon.

On the other hand, the coupling (,,|Vg|y,,) is generally large for insulators although the
crossing does not usually occur between the ground state and the first-excited state; this is
reflected from the large electron-phonon coupling. The crossing, however, can occur between
two excited states. Therefore, the mixing occurs in excited states dynamics. Suppose there is
a potential surface that may lead to a dissociation of a molecule and another one that may not.
Depending on the velocity of the wave packet Vgyx,(R,t), the second term in the Hamiltonian
(Eq. (1)) can be large or small; the faster the velocity the larger the coupling is. This explains

behavior of fast chemical reaction occurring after photo-excitation.
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How to access the NAC vector
To get the value of NAC vector, one needs to evaluate the change of the many-body wave
function (eigenstate of the electronic Hamiltonian) with respect to displacement of nucleus,

(Y |Vr|y,), which is usually too difficult to achieve. In this context, let us recall the equation

(Pl (VD)) (1|7 (|r |> i) (Wl ARy
R e e = T

where h(r;R) = Vg ( ) Let us then compare it with the density response induced by the

perturbation V. (r,w) = h(r; R)e!“?, that is,

Sp(r,w) = f)((r,r’,a))Vext(r’,w)dr’

The response function is given by

(Wol D) Xpn D) ho) (ol P )l H()ho)
—(E,—Ey) +in w+ (E, —Ey) +in

x(rr o) =

where p(r) = XN_, §(r — ). When taking [ dr 8p(r, w)Vey (1, w), the resulting quantity is
proportional to

(lpolvextll/}n)(wnlvextlwo) (lpOlVextlwn)(wanextlwo)
w— (E, —Ey) +in w+ (E,—Ey) +in

B Z (Yol R(R) [P )W [R(R)I1ho) (o lR(R) | Xt |R(R) [0)
B w—(E, — Ey) +in w+ (E,—Ey) +in

of which the numerator is square of the NAC vector. This indicates that the NAC vector can

be given by the susceptibility (correlation) of h(R).

According to the time-dependent DFT, this can be given via the Dyson equation

X(TJ r’l (J)) = XKS(TI T', (l)) + J drldrz XKS(rI T, w)KHXC (Tll T2, (I.))X(Tz, r/r (l)),

where

Tt fac( 2, 0)

Kuxc(ry, 1y, 0) = [ — 1|
1712

and

’

' w) = 2 Z Pi(MPa(MPa(pi(r) — pa(Mpi(M)ei (r)pa(r')
Xks(r, v, w) = ' —(sa—si)+ir] a)-|-(ga—gl.)—in

where i (a) runs over all the occupied (unoccupied) states. (Practically, one cannot take all

the unoccupied states into account. One needs to introduce a cutoff). Therefore, by

computing the susceptibility using the response function of TD-DFT, one can obtain the
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value of NAC vector. There is a known compact form for the response function, known as
Casida equation, which can be used to conveniently. TD-DFT is accessible by Quantum

Espresso as well as may quantum chemical software packages like Gaussian.

Recall that the TD-DFT equation was derived from the response of the Kohn-Sham artificial

system to the change in the effective potential

Sp(r,©) = f Zs(rt, 7Y 8vee ('t dr = f Xs (7Y (5Vee (') + vy (r'E))dr

= f XKS(rt:T’t’)((Svext(r’t’) + fHXC (r’t’,r”t”)6vext(r"t"))dr',

which is Fourier transformed to the previous equation. The quantity fyxc, or the Hartree
exchange-correlation kernel, is a functional of the time-dependent density. Note that the
adiabatic approximations (or w-independent approximations) are usually adopted. Note also
that the kernel formally plays a role of describing the interacting electrons and holes as does

the exchange-correlation self-energy in the theory of Hedin.

It is worth mentioning that the TD-DFT has been shown within the linear response scheme.
But the importance of TD-DFT is in the fact that non-linear response can be accessed despite
its limited accuracy originated from using approximate functionals. The linear response
means a linear deviation from the ground state, which is generally invalid for representing the
excited state density. The excited-state of a small molecules, for example, has a density that is
very different from that of the ground state. The excitation is no more a small perturbation to
the system. In that case, one should alternatively follow a real-time evolution of electrons,
which can be achieved by integrating the time-dependent Kohn-Sham equation with respect

to time.

The simplest expansion formula like

L @u(t+AL) — @, (t — AL) 1

is not very appropriate in this case because this does not guarantee orthonormalization of the

Kohn-Sham orbitals. In this context, it is convenient to use

@n(t + At) = exp [— % (— % v?+ Veff(rt)) At] Pn(0)

~ exp [— L (— L \72> At] exp [— 1 (rt)At] exp [— = (—l Vz) At] @, (t)
2iA\ 2 in e 2iA\ 2 n

which guarantees the orthonormalization and thus advantageous for parallel computation.
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When applying the classical approximation to nuclei as
ih 0We)(r; R(t)) = HoWer(7; R(1))
MOZR(t) = —VRE,(R(1))
this coupled electronic and nuclear equation is called Ehrenfest equation of motion. This is a
kind of mean-field approximation to the coupling of electrons and ions. In integrating this
coupled electron-nucleus equation, one will encounter a problem of very different time-scale
for the electronic and nuclear motion. The large difference in the time-scale makes the

numerical approach very unstable.

It is worth mentioning that the mixed classical-quantum approach like the Ehrenfest is known
to introduce a fundamental problem; as note in many textbook of quantum mechanics, nuclear
force derived thereby can be meaningless. Nuclear motion will be driven by the “force from
electron” averaged over quantum states of electrons, which needs to be handled carefully.
When, for example, there are two electronic states for which a nucleus will feel a dissociative
force and a binding force, respectively. The nucleus will feel just an averaged force although,
in proper quantum mechanical approach, the nuclear wave functions of dissociative and
bound character should be used to describe the nuclear state. For a system of very small

degrees of freedom, there are ways to avoid such problem but is not practical for large systems.

There are movies on the Ehrenfest TD-DFT simulations, for example, on the internet.
https://figshare.com/articles/Physical_Factors_Affecting_Charge_Transfer_at_the_Pe_CO
OH_TiO sub_2 sub_Anatase Interface/2238757

One can observe a charge-transfer phenomenon that occurs between the adsorbate molecule
Pe-COOH to a titania surface. The authors investigated how the charge transfer dynamics is

affected by nuclear motion.

Quantum mechanical behavior of nuclei

Although nuclei are heavy, they behave as a classical particle at high temperatures. However,
this is not always the case. Especially for hydrogen, or proton, the quantum effect is negligibly
small. To take the quantum effect into account, at least approximately, one can use the path

integral method.

For this purpose, let us start from the Hamiltonian
_ p? o
H = Zﬁ‘i' H,(%,p; R)
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and adiabatic states |y;(R)). By decoupling the whole system into electronic and nuclear

states as

[Wi(R)R) = |i, R)

the following equation is assumed to hold

H (7, 8; R) [ (R)IR) = E;(R)Y;(R))IR).

We are interested in an equilibrium density at temperature T. Then we will derive a formula

for the partition function
Z = Tr[exp(—pH)] = f dR Y (i R| exp(~B) |i, R)
i

When the exponential is partitioned into P parts by inserting the identity

[ ary timyrt,
Z=JdR1---dRP Z <i,R‘exp(—%ﬁ>

iq,ip
exp(—%ﬁ) exp(—%ﬁ)|i,R>

Then we need to evaluate terms like

we get

ip, RP>

X <iPrRP lp-1, RP—1> <i1'R1

/SN

J

p(s,s—1;10) = <i5, R.| exp (— is—lfRs—1>

This can be approximated as

By PP
€xp (— pZz M,

( B Eo(Rs) + Eq(Rs_1)
X exp —E

p(s,s — 1;1) = (Yo (Rs) o (Rs—1)) <Rs

o
> ) 8i.00i,_,.0

from the adiabatic sense. The overlap appearing above can be approximated by using Taylor

expansion as

Syom1 = (Wo (R (Ry_1)) = j drps(rs ROWo(rs Ry_1)

1
=1+ EZ(RI,S—L Rl,s)(R],s—l' R],s) f d’”llls (r; Rs)vl,svl,s—llpo(r; Rs—l)
L]
where we have assumed that the wave function is real, so that we can apply

[ g ROV =0
Since the derivative terms are small, we can reasonably assume that the overlap is small. Then
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B M, (VP\’
p(s,s —1;T) =~ exp <_EZ7I<E> (RI,s - RI,S—1)2>
T

Ey(Rs) + Eq(Rs—
s (_g o(R) + B 1)) ot

Therefore, we have

3P
Z= H (21:;;) i del -+ dRp exp —ﬁZZ%(F\/ﬁ)Z (Rys — RI,S—1)2 + %EO(RS)

This has the same form as the partition function of classical systems having N x P particles

M, (VP 1
Vegr = Z Z% (,B_h) (R,,S - R,_S_l)z + FEO(RS)

This means that, if we perform a molecular dynamics (MD) simulation using NP particles

interacting via

under a constant temperature T, we get canonical ensemble of N quantum particles. So, the
problem is then how to do the DFT MD simulation. In fact, the method is well established.
The quantum simulation can be done conveniently using, for example, PIMD developed by

Dr. Shiga.
http://ccse.jaea.go.jp/ja/download/pimd/index.jp.html

Maximally localized Wannier orbitals
In solid state physics, Wannier orbitals are constructed from the Bloch orbitals by taking a
“Fourier transformation”. Wannier orbital is localized spatially with the decay rate depending
on the electronic structure; it decays exponentially for insulators and polynomially for metals.
The decay rate can be enhanced by adding different bands to the transformation. When this
is done maximally, the orbitals are localized in atomic scale and can be taken as atomic orbitals
under the crystalline environment. The resulting orbitals can be conveniently used as a basis
of the strongly correlated electron models. In addition, it has a peculiar property surprisingly

suitable for the study of ferroelectrics.

Formulation
We begin by defining the Wannier orbitals taking the phase factor ¢ explicitly taken into

account.

Q . .
IR = Goass [ Womidei®® -k
BZ
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Here, 1, (r) is the Bloch orbital,

Y (1) = Ung (T)eikr: Uni (1) = Ui (r + R),
R is the lattice vector and (k) is the phase factor that is periodic in BZ; @(k) = ¢(k + G)
for reciprocal lattice vectors G. We can localize the orbitals more by including a unitary

transformation among bands:

Q . .
Rad = s | Ul e 0~

BZ m

The transformation matrix U can be determined by minimizing a variance
L= (0alr?10,) = (0[r10,)%)
n

One can show that the matrix elements can be written using the periodic part of the Bloch

function and derivatives in the reciprocal space.

Q

(Ryl7[0,,) = im

f (Uni |V |umk)eikR dk
BZ

Q ,
(Ralr210,) = i o553 f (1t | V2 [t ) Rl
BZ

The derivatives are in practice estimated using the finite mesh points spanning the Brillouine
zone; this is the computational physics. In this case, we approximate the derivative by a finite

difference as
PFk) = ) wyblf Gk + b) = £l
b
where b's are vectors chosen so that k and k + b are neighboring mesh points. Similarly,

P2£() = ) wyblf (k +b) = (O
b

This indicates that (i, |V |umk) is approximated using overlaps of the form (u, |Upmp4p)- It

was shown that

1
(0,,710,) = — NZ wy b Im(In{up | Uni4p)): Wannier center
Kb

1
<0n|r2|0n) = _Nzwb {1 - |<unk|unk+b)|2 + |Im(ln<unk|unk+b))|2}
k,b

hold. Therefore, the overlaps, Mgf;lb) = (Unk|Umr+p)> Plays the central role in calculating the

localized Wannier orbitals.
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Modern theory of polarization

1. Motivation: Intuitive definition of polarization will be

1
P=— drrp(r),
cell
where (2 is the volume of the cell and p(r) is the charge density, but this is ambiguous for

solids. The result depends on how we take the origin and also how we take the unit cell. This
is the well-known problem of the polarization. You may consider that the real materials are
finite, so that the polarization should be well-defined after integrating over the whole sample.
In that case, the integration can be transformed to the surface integration using the Green’s
theorem. Thus, the theory requires argument of the surface. But, there is a way to define the

polarization using the unit cell information only.

2. New approach: One can solve the problem of the ill-defined “crystalline polarization” by
considering “flow of charge” associated with displacement of ions. Phenomenologically, the
polarization occurs associated with the ionic displacement, such that the polarization P is
zero at an initial configuration of ions but is nonzero at a displaced configuration. This fact
makes it possible to define the polarization by connecting the initial unpolarized state to the

final polarized state continuously and integrate the associated flow of charge as

1
P = fdt— drj(r,t).
‘Q cell

This “adiabatic” definition has made it possible to modernize the theory of polarization.

2.1 (DFPT formulation) Before introducing the modern theory, let us apply the DFPT
explaining associated problems. To make the polarization to occur, we apply electric field with
large wave length; because of the ill-defined nature as explained above, the wave length is let
to be finite and will be extrapolated to infinity after the calculation. Because of the electric
field, the atoms will be displaced in proportional to the field strength thereby generating a
polarization P, = Z;R. The nuclear charge Z, can be defined alternatively as the derivative of
the polarization with respect to the atomic displacement SR. This can be also described as

the second derivative of the total energy with respect to the electric field and the atomic

2
displacement ZEE;"RR The electron density will also be changed by the electric filed by Z—Z SE +
2
Z—Z(S‘R + %;—a’;dEdR + ---: Because the first order changes are zero, the second order is

important. Since the uniform electric field is also ill-defined, we practically apply the field of
finite wave length and then extrapolated to infinity after calculation. From the second
derivative modifies the value of Z, as Zt + Z.g, which is called Born effective charge. This is

a DFPT approach to the Born effective charge. The modern approach is different.

3. Formulation: Let us introduce a parameter A connecting the unpolarized and the polarized

53



states; you may regard A as a parameter for the displacement. By applying a first-order

perturbation theory, change of the wave function can be written as

<¢mk | al |1/)nl)

) = —ih6A —_—
| lzbnk) l Enk _Emk W)mk)

m+n
Corresponding current is obtained by calculating the expectation value of the current operator

as,
. _ ar, _ ihe/l fdk (¢nk|P|¢mz)(¢mk|aA|¢nz)
In="ar T @n)? " Ep
m¥+n
This can be rewritten using the periodic part of the Bloch wave function. The result is
dp, el
E = —(27-[)3 fdk(Vkunkw,lunk) +c.c.

This is appealing in that the contribution from the unoccupied states disappears and that the
derivative with respect to k is conveniently accessed by the maximally localized Wannier
orbital method.

When summing over all the occupied states n and integration over t (to connect the

initial and final states) we finally arrive at

e
P(A) = Wlmzn: fdk(unklvklunk)

AP = P(1) — P(0) = P(1)
This is equivalent to the quantity appearing in the Berry phase theory and thus we will regard
(Uni |V |luni) as a Berry connection or gauge potential. Note that this is the electronic

contribution to the polarization. We need to add the ionic contribution

Pion = ZZ R,
e e
P= w]l’l’lZJdk(Unleklunk) +§Z Z‘L'R‘r
n T

This way we arrive at this very useful formula.

as

4. Quantum of polarization: Suppose we are integrating over a path within a one-dimensional
Brillouine zone;

/L
Pn 2 Imf dk<unk|ak|unk)
/L

In this case, the initial and final points are equivalent because of the periodicity. So, the above
integration path corresponds to a closed loop.

The phase of the wave function can be taken arbitrarily like
Uy = e_iﬁ(k)unk
except that the difference at the boundary B(m/L) — B(—mn/L) is a multiple of 2 7 . When the
polarization is calculated using this new wave function, we get

n = P + 2mm: m € Integer
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indicating that the polarization can be defined within the modulo of e. In other words, we
cannot definite uniquely the crystalline polarization, which may be understood as different
paths can be used to connect the equivalent points in the Brillouine zone.

When this discussion is extended to a 3D system, it can be shown that the polarization is

well defined within the modulo of

where R 1is a lattice vector
Jj
Please see a literature on modern theory of polarization for the proof.
yotp p
. . . . . i0
The polarization can be rewritten using the relation r = —-=, as the real part of
P g = p

T dk , /L gk
P, =—e f_3§<unk|_lak|unk) = —e€ J;H/Lﬁ(unklrlunk)
L

5. Wannier center: We have learned that the Wannier orbitals are

wn(r—R) = -Qf * e ey (r) = -Qf :

k.
———ekr=Ry ().
sz (21)° sz (21)° e

Then, it is possible to show that the polarization can be described by the position of the

Wannier center (after adding the contribution from the nuclear charge)

Py = 2 g = R) = 5 (Wl W) = R).
Note that the Wannier center represents the spatially distributed charge density as a point
charge (see figure). We can thus regard the polarization effectively as the charge assigned to
the Wannier center. Note that the calculation can be done efficiently when using the most
localized Wannier orbitals, instead of the standard one shown here, but that formulation is

skipped here.

)
A
+ »  >—®

There are various ways to relate it to the flow of charge differently like

)\
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This difference corresponds to the existence of modulus.

Density functional perturbation theory
(http://iffwww.iff.kfa-juelich.de/~wortmann/IFF-Springschool45/C2.pdf)

Here we study the perturbation theory within DFT, namely DFPT. DFPT is different from
the perturbation theory of noninteracting systems in that the density response should also be

taken into account. I will introduce DFPT in relation to the polarization of materials.

1. Sternheimer equation for noninteracting systems
The first-order change in the wave function ¢i(1) can be obtained by solving the Sternheimer

equation

(H© — £©) |¢i(1>> = —(H® — ¢W) |¢f°)>

where H? and €° are unperturbed ones and H® and ¢ are the perturbed ones and

This equation is solved by superimposing the unperturbed states as

¢i(l)>=z @ |¢(o)> Z (1)|¢(o)> Z €Y |¢<o)>

J JEI jert
where [ and [! are states degenerate to 1[1(0) and other states, respectively. By this
definition,
(0 D\ _ @ (.0 (0) (0)
(1 =) wi%) = D, P (57 =) [vi”)
jert
Therefore,
O () _(o)>
HON <¢J [ _|¢l forj € I*
Cij -0 _ 0 orj &=
j i

Using the gauge degrees of freedom to set c ] =0 forj € I. Therefore,
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1p(o)l (1)|¢(o)>

¢(1)> Z|¢(O)>< 0) (0)

jert
This can be alternatively written as
P (HO = ) bt [p®) = =P HO[p@) with - = > [p®) (3]
jert

or

B} = 6 ()HO[9) with Gu @) = [P (e~ HO)RH]™

2. DFT
In DFT, one has to take the density variation into account. The first-order change in the

energy is

d
> + aEch[p(o)]-

d
T QT + Ve + Vi + Yeelt) = (9|7 + Ve
7
The second order change is

(O] + Verd @) + (2] 1 + Ve @[ ®) + (0| + Ve O[5
+ <1pi(1)|(T + Vext) O [t} 1)>

(S‘Ech[P ] o)) (1) (ot <6EHXC[p ]) @
_U 5p(r)6p(r’)p )p P (r")drdr’ +jdl —Sp(r) p(r)dr

1 d?
2 d/12 Ech [P ]
with

p0@) = ) OO+ P .

The perturbed Kohn-Sham orbitals ¢i(1) are obtained by solving the Sternheimer equation:

(1 =) =~ - 4) o)
with
S2E [p(o)]
HO = (T € Hxc W (Y gy’
(T + Vex)™ + OGN (r")dr
and

= o)
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3. DFPT for polarization

Let us study the polarization, which can be characterized by change in the polarization Pg
caused by a uniform displacement of an atom k in the direction R,,: here uniform means
that the atom in a cell is displaced together with its periodic images. The relevant quantity is

the Born effective charge defined by

Zi e = 0
K.Ba R
Since the total energy can be described as
E[p] —QP- &
under the electric field € induced by the polarization,
_ 10E[p]
B~ _EW
Therefore,
0%E|p]

Zrp, = ——
rpa ORa0Ep

This can be calculated by applying the DFPT. Since the Ey,. has not dependence on the
atomic displacement and electric field, T + V., does not depend on the electric field, and the
kinetic energy operator is not affected by a uniform atomic displacement, the equation is
simplified as
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So, we need to solve the Sternheimer equation twice to get lpi(R"“) and 9; ", corresponding

to change in the Kohn-Sham orbitals with respect to the atomic displacement and the

generation of the electric field.

About quantum espresso
Now let us use the environment

https://www.materialscloud.org/work/quantum-mobile
which will install a virtual machine (Virtual Box 5.2.8 + Ubuntu 16.04.4LTS) on which you
can run quantum espresso (v6.2.1) and wannier90 (2.1).

<First assignment: transfer of the benzene >
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Change your directory to wannier90-2.1 (depending on the version you installed) and then to
examples/example12. Then you will find input files for the calculation of benzene.

First, do an SCF calculation: In the SCF calculation, you get the effective Kohn-Sham
potential, electron density and KS orbitals.

pw.x < benzene.scf > scf.out

Second, run wannier90 to generate a list of the required overlaps (written into the
benzene.nnkp file).

wannier90.x -pp benzene

Third, run pw2wannier90 to compute the overlap between Bloch states and the projections
for the starting guess (written in the benzene.mmn and benzene.amn files).

pw2wannier90.x < benzene.pw2wan > pw2wan.out

Finally, run wannier90 to compute the MLWFs.

wannier90.x benzene

Do this again by adding the lines to the benzene.win
restart = plot
wannier_plot = true
wannier_plot_format = cube
wannier_plot_list = 2-4
Then you have files for the second to fourth MLWFs. By changing the digits, you can draw all

the orbitals.

1. Use xcrysden to draw all the MLWFs.

Do the same thing after you have inserted a line at the end of benzene.win

write_hr = true

Then you will get benzene_hr.dat

Focus on the third to fifth columns, say a, b, H. It indicates the transfer integral between the

atoms a and b is H.

2. Show the value of transfer on a picture describing the structure of benzene. You need to

show only the largest ones, for example, only those whose magnitude is larger than 1 eV.
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3. Describe scientific significance of the results.

<Second assignment: Born effective charge of Pb in PbTiO; >

Following the example04 of the quantum espresso, calculate the Born-effective charge of
Pb. Explain briefly procedures for the calculation, important parameters in the input file,
result of the calculation. For this, use the ball and stick model obtained using, for example,

xcrysden. Also, show scientific significance of the result.
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