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Computational Physics Course 2020 summer 

 

Brief introduction of lecturers 

 

Schedule 

In the first half of the course, I will introduce the density functional theory (DFT) and the 

software package “Quantum Espresso”. The contents are as follows 

1. Density functional theory (DFT) 

2. Relation with many-body theory 

3. Quantum espresso 

In the second half Prof. Arita will show you 

4. Introduction to strong correlation 

5. Dynamical mean field theory (DMFT) 

6. DFT+DMFT 
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General introduction 

   I will introduce the density functional theory (DFT) and its extensions, which have been 

developed as a tool to simulate the electronic structure of materials and to predict properties 

of materials. The importance of DFT is in its practicality; the theory provides an approximate 

but practical way to understand the electronic structure, which has had, and will continue to 

have, impact in the research of materials. (In my definition, materials mean those matters 

targeted by condensed matter physics, biophysics, or chemical physics.) In this context, I 

consider it important for beginners to practice a simulation, so that students are requested to 

practice a few simulations. 

 

Why is practicality so important? 

   To understand the electronic structures, one can use the many-body wave function, or 

alternatively the Green’s function. The many-body wave function contains full information 

but has impractically large degrees of freedom. This may be understood by counting the 

number of ways to assign ten electrons to 𝑀 orbitals, which amounts to 𝑀10! The number 

can be reduced by considering symmetry but is still too large. Of course, all the degrees of 

freedom are not essentially important, and it is possible to considerably reduce the number 

with information theory for example: Research in that direction is on-going. The need for 

practical theory has led to the invention (development) of the density functional theory. This 

point was emphasized by W. Kohn in his Nobel prize lecture: 

https://www.nobelprize.org/uploads/2018/06/kohn-lecture.pdf 

 

   The invent of DFT turned out to be revolutionary in that the electronic structure 

calculation has made an easy access of nonexperts, including experimentalists as well as 

theoreticians working on abstract models. From a practical point of view, experimentalists are 

often required to do a DFT simulation to support their experiment by reviews of journals and 

similar things happen for theoreticians. Experiencing a simulation at the start of his/her 

research life should be advantageous. 

 

Simulation in this course 

   I will spend a few hours to show students how to install a simulation software and how to 

use it. I will focus on the program package called Quantum Expresso (QE). This is currently 

the most popular one in the world and there are many how-to’s available via the internet. 

Students of this course are requested to use their own computers and will be guided to do a 

few simulations. 

 



3 

 

Introduction to Density functional theory (DFT) 

 

I will follow the article written by J. Toulouse 

http://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_dft.pdf 

which was prepared for the summer school in France. 

Some recommended articles 

The most popular introduction to DFT was written by Parr and Yang. 

R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford 

University Press, New York, 1989). 

which covers the development until mid-1980. Practical aspect of DFT simulation is summarized 

in 

W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-

VCH, New York, 2001), 

which covers the technology on the exchange-correlation that had been developed until 2000 

although further developments were made thereafter. Most recent textbook can be found, for 

example, in 

T. Helgaker, P. Jørgensen and J. Olsen, Density–Functional Theory: A Convex Treatment 

(WileyBlackwell, 2016) 

 

The starting Hamiltonian 

   Here we on the Born-Oppenheimer approximation and non-relativistic approximation for 

𝑁-electron systems. Then, the target of study is the electronic Hamiltonian, consisting of the 

kinetic energy of electrons, electron-electron interaction, and the Coulomb field from the 

nuclear charge 

𝐻̂el = 𝑇̂el + 𝑊̂ee + 𝑉̂ne,                                                                           (1.4) 

for the details see Eqs. (1.1)-(1.4) of the article by J. Toulouse (hereafter, I will call it just 

“article”). Instead of the wave function |𝛹⟩, the density 𝑛(𝒓) can be used to characterize the 

ground state: This is what DFT is telling about. 

 

What does it mean? 

The density is defined by 

𝑛(𝒓) = 𝑁 ∭|𝛹(𝒙, 𝒙2, ⋯ , 𝒙𝑁)|2 𝑑𝜎𝑑𝒙2 ⋯ 𝑑𝒙𝑁,                                    (1.6) 

where 𝒙 is the space-spin coordinate and satisfies ∫ 𝑛(𝒓)𝑑𝒓 = 𝑁. This three-dimensional 

quantity is the “descriptor” of the 𝑁 -electron system although |𝛹⟩  is, of course, the 

descriptor as well. This surprising statement was shown by Hohenberg and Kohn about fifty 
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years ago. (This is surprising when considering large difference in the degrees of freedom 

between the density and the wave function.) 

 

Hohenberg-Kohn theorem 

   This theorem relates or maps the electron density 𝑛(𝒓) to the external potential 𝑣(𝒓). In 

considering the mapping, it is trivial that mapping from 𝑣 to 𝑛 exits simply because, given 

the external potential 𝑣, one can solve, in principle, the Schrödinger equation and the density 

𝑛 is obtained from Eq. (1.6). What is nontrivial is the reverse mapping, i.e., mapping from 𝑛 

to 𝑣 , which can be derived as follows. (Before going in detail on the Hohenberg-Kohn 

theorem, I note that this may be counterintuitive in that the precise measurement of the 

electron density yields uniquely the position of nuclei.) 

 

   The proof can be given by different ways; (1) two-step proof by contradiction and (2) 

proof using the Levy’s constraint search. Here I will show the first one only. 

 

Two-step proof by contradiction (a modified version) 

We will derive a contradiction for the assumption that there exist two local potentials 

(differing by more than an additive constant) which have the same ground-state density. 

   From the two local potentials, 𝑣1(𝒓)  and 𝑣2(𝒓)  which differ more than an additive 

constant, one can construct the Hamiltonians, 𝐻̂1 = 𝑇̂ + 𝑊̂𝑒𝑒 + V̂1  and 𝐻̂2 = 𝑇̂ + 𝑊̂𝑒𝑒 + V̂2 . 

Let us assume that they share the same ground state |𝛹⟩. Then, one gets 

(𝑉̂1 − 𝑉̂2)|𝛹⟩ = (𝐸1 − 𝐸2)|𝛹⟩,                                                          (1.9) 

namely 

∑[𝑣1(𝒓𝑖) − 𝑣2(𝒓𝑖)]𝛹(𝒙1, 𝒙2, ⋯ , 𝒙𝑁)

𝑁

𝑖=1

= (𝐸1 − 𝐸2)𝛹(𝒙1, 𝒙2, ⋯ , 𝒙𝑁).                         (1.10) 

holds globally in the phase space, leading to 𝑣1(𝒓) − 𝑣2(𝒓) = const  when the potentials 

reasonably well behave almost everywhere so that 𝛹(𝒙1, 𝒙2, ⋯ , 𝒙𝑁) ≠ 0  except for some 

points. This contradicts with the initial hypothesis. 

   We will then assume that different states |𝛹1⟩ and |𝛹2⟩ corresponding to 𝐻̂1 and 𝐻̂2, 

respectively, have the same density 𝑛(𝒓) . These states are different and therefore |𝛹2⟩ 

cannot be a ground-state wave function of 𝐻̂1, 

𝐸1 = ⟨𝛹1|𝐻̂1|𝛹1⟩ < ⟨𝛹2|𝐻̂1|𝛹2⟩ = ⟨𝛹2|𝐻̂2 + 𝑉̂1 − 𝑉̂2|𝛹2⟩ = 𝐸2 + ∫ [𝑣1(𝒓) − 𝑣2(𝒓)]𝑛(𝒓)𝑑𝒓 (1.11) 

holds. In parallel, we can show the following:  

𝐸2 < 𝐸1 + ∫ [𝑣2(𝒓) − 𝑣1(𝒓)]𝑛(𝒓)𝑑𝒓                                                         (1.12) 

Then, we arrive at an inconsistent inequality 𝐸1 + 𝐸2 < 𝐸1 + 𝐸2. 

   Therefore, we are lead to the conclusion that 𝑣1(𝒓) and 𝑣2(𝒓) are the same except for 
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the additive constant and the mapping from 𝑛 to 𝑣 holds. 

 

From the discussion made in the proof it is also clear that the ground-state energy 𝐸 can 

be obtained as the minimum of the expectation value of the Hamiltonian, or there exist a total-

energy functional 𝐸[𝑛] which is given as 

𝐸[𝑛] = min
𝑛

{⟨𝛹[𝑛]|𝑇̂ + 𝑊̂ee + ∫ 𝑣[𝑛](𝒓)𝑛(𝒓)𝑑𝒓|𝛹[𝑛]⟩}.                              (1.15) 

We can also define a functional called Hohenberg-Kohn functional as 

𝐹[𝑛] = min
𝑛

{⟨𝛹[𝑛]|𝑇̂ + 𝑊̂ee|𝛹[𝑛]⟩}.                                                                    (1.14) 

Once the functional has been obtained, the ground state density and the ground state energy 

can be obtained without solving the Schrödinger equation. The advantage is very large. 

 

𝒗-representability 

It is reminded that 𝛹[𝑛] is not uniquely determined when the ground-state is degenerate. 

Nevertheless, the functionals 𝐹  and 𝐸  are uniquely determined. These values can be 

determined by finding a minimum once the functionals 𝐹[𝑛] and 𝐸[𝑛] are established. This, 

however, does not mean that the statement is of practical importance, especially because the 

search needs to be restricted to those represented from the ground-state wave function via 

Eq. (1.6), namely those that satisfy the 𝑣-representable condition. All three-dimensional 

functions are not necessarily 𝑣-representable! 

 

Levy-Lieb constrained minimization 

   The Hohenberg-Kohn functional 𝐹[𝑛] can be made more practical when we introduce an 

alternative definition (Levy and Lieb) 

𝐹[𝑛] = min
𝛹→𝑛

⟨𝛹|𝑇̂ + 𝑊̂ee|𝛹⟩                                                                       (1.17) 

in terms of the constrained minimization of Ψ. This should provide the same functional as 

that provided by Eq. (1.14) but does not require the 𝑣-representability, so that the minimum 

can be found by simply searching all functions that satisfy ∫ 𝑛(𝒓)𝑑𝒓 = 𝑁: namely assuming 

𝑁 -representability. Of course, the obtained density does not necessarily satisfy the 𝑣 -

representability, which needs to be checked afterwards. When Eq. (1.17) is introduced, it is 

straightforward to show that the ground-state energy can be obtained by minimizing 𝑛(𝒓): 

𝐸0 = min
𝛹

⟨𝛹|𝑇̂ + 𝑊̂ee + 𝑉̂en|𝛹⟩ = min
𝑛

min
𝛹→𝑛

⟨𝛹|𝑇̂ + 𝑊̂ee + 𝑉̂en|𝛹⟩

= min
𝑛

{min
𝛹→𝑛

⟨𝛹|𝑇̂ + 𝑊̂ee|𝛹⟩ + ∫ 𝑣(𝒓)𝑛(𝒓)𝑑𝒓}

= min
𝑛

{𝐹[𝑛] + ∫ 𝑣(𝒓)𝑛(𝒓)𝑑𝒓}                                                          (1.18) 

 

Additional comment of Hohenberg-Kohn theorem 
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   It should be emphasized that, so far, more than fifty years were spent in trying to find a 

reasonable functional form appropriate for materials; the accuracy is still not enough for many 

materials. In the early stage, people searched a form for the kinetic energy functional 𝑇[𝑛], 

but the efforts have not been so successful. Instead, method of Kohn-Sham was introduced as 

will be explained below. People have also searched a form for the electron-electron interaction, 

𝑉ee[𝑛]; equivalently, a form for the exchange-correlation functional that is define as 𝑉ee[𝑛] =

𝑉H[𝑛] + 𝑉xc[𝑛], where the first term is the Hartree-energy defined as 

𝑉H[𝑛] =
1

2
∫

𝑛(𝒓)𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′, 

and is sometimes called as the classical Coulomb. 

 

Exercise 

To understand the difficulty of constructing the kinetic energy functional, let us test the one 

constructed using the Thomas Fermi (TF) model. Note that TF model is appropriate for 

systems where the electron density has a small spatial dependence, i.e., for a nearly uniform 

system. According this model, the kinetic functional is given as 

𝑇 =
35/3𝜋4/3

10
∫ 𝑛(𝒓)5/3𝑑𝒓 

for a three-dimensional system and as 

𝑇 =
𝜋2

6
∫ 𝑑𝑥

𝐿

0

𝑛(𝑥)3𝑑𝑥 

for a one-dimensional system. From this, one can naively define the kinetic energy density 

functional as 

𝑡[𝑛(𝑥)] =
𝜋2

6
𝑛(𝑥)3. 

This is a local density approximation to the kinetic energy. 

   The integration can be done analytically for a 1D potential well of infinite wall height, 

where the wave function has a form 

𝜑𝑛(𝑥) = √2/𝐿 sin (
𝑛𝜋𝑥

𝐿
), 

and the kinetic energy is given as 

𝑇 = ∑
2

𝐿
∫

1

2
(

𝑛𝜋

𝐿
)

2

sin2 (
𝑛𝜋𝑥

𝐿
)

𝐿

0

𝑑𝑥

𝑁

𝑛

=
𝜋2

6𝐿2
𝑁(𝑁 + 1) (𝑁 +

1

2
). 

When using the Thomas Fermi model, the kinetic energy is approximated as 
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𝑇TF =
𝜋2

6
∫ {

2

𝐿
∑ sin2 (

𝑛𝜋𝑥

𝐿
)

𝑁

𝑛

}

3

𝑑𝑥

𝐿

0

=
𝜋2

6𝐿2
𝑁 (𝑁2 +

9

8
𝑁 +

3

8
). 

Therefore, the ratio 𝑇TF/𝑇 behaves as a function of the density 𝑁/𝐿 like 

 

which is reasonably well for higher density, or large value for 𝑁/𝐿, but deteriorates with 

decreasing density. The reason can be found by comparing the TF kinetic density and the 

exact one. 

 

The values for 𝑁 = 10, 𝑁/𝐿 = 6 are comparable in the region between the potential walls but 

are quite different near the end points. This reflects the general difficulty of constructing the 

kinetic energy density functional in the region where the density rather abruptly changes. 

   Note that the potential changes very abruptly near the nuclear position as well and the 

density also changes in the core region. This is the reason why Thomas Fermi model fails; the 

model cannot reproduce the shell structure of an atom! 

   There have been much efforts to develop the kinetic energy functional as can be found 

from the textbook written by Parr and Yang. None of the effects have been very successful as 

far as I know. The reason may be due to the complexity of the functional. There is a trial to 

construct the functional 𝑇[𝑛] by machine learning (Brockherde et atl. “Bypassing the Kohn-

Sham equations with machine learning”, Nat. Comm. 8, 872 (2017)). 

 

Kohn-Sham method (modern version) 

   To overcome the problem of constructing the kinetic energy functional, Kohn and Sham 

proposed a method to replace the kinetic energy functional with that of a non-interacting 

10 20 30 40 50
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system that shares the same density distribution 𝑛(𝒓). More precisely, one assumes that there 

always exists a non-interacting system under the influence of an effective potential 𝑣eff(𝒓) 

whose ground-state electron density is the same as that of the system of interest. Since the 

wave function of the non-interacting system can be relatively easily computed numerically, 

the kinetic energy functional can also be easily constructed, which will be denoted as 𝑇𝑠[𝑛]. 

The proposition of Kohn and Sham is to use 𝑇𝑠[𝑛] instead of 𝑇[𝑛] and approximate 𝐹[𝑛] as 

𝐹[𝑛] = 𝑇𝑠[𝑛] + 𝑉H[𝑛] + 𝑉xc[𝑛], 

where 

𝑇𝑠[𝑛] = min
Φ→𝑛

⟨Φ|𝑇̂|Φ⟩ = ⟨Φ[𝑛]|𝑇̂|Φ[𝑛]⟩.                                    (1.21) 

The last equation reflects the fact that the non-interacting system can be represented by the 

Slater determinant Φ. (Here we use the Hartree-Fock state as the reference system but it can 

be anything in principle. Importantly, the reference system should be such that the ground-

state wave function can be prepared.) (You may wonder if the kinetic energy can be 

approximated by that of Hartree-Fock; this is not the case always especially for strongly 

interacting systems.) 

   By tracing Eq. (1.18) reversely, we find that the total-energy can be obtained by searching 

for the density representable by the Slater determinant that minimizes the HK functional as 

𝐸0 = min
𝑛

{𝐹[𝑛] + ∫ 𝑣(𝒓)𝑛(𝒓)𝑑𝒓} ⟹ min
𝑛

{min
Φ→𝑛

⟨Φ|𝑇̂|Φ⟩ + 𝐸Hxc[𝑛] + ∫ 𝑣(𝒓)𝑛(𝒓)𝑑𝒓}

= min
𝑛

{min
Φ→𝑛

⟨Φ|𝑇̂ + 𝑉̂ne|Φ⟩ + 𝐸Hxc[𝑛Φ]}

= min
Φ

{⟨Φ|𝑇̂ + 𝑉̂ne|Φ⟩ + 𝐸Hxc[𝑛Φ]}.                                              (1.22) 

By minimizing the functional with respect to the Slater determinant Φ, the density can be 

obtained as 𝑛Φ. Note that the Hartree-exchange-correlation functional can be decomposed 

into 

𝐸Hxc[𝑛] = 𝐸H[𝑛] + 𝐸x[𝑛] + 𝐸c[𝑛] 

where 

𝐸x[𝑛] ≡ ⟨Φ[𝑛]|𝑊̂ee|Φ[𝑛]⟩ − 𝐸H[𝑛],                                                        (1.26) 

and 

𝐸c[𝑛] ≡ ⟨Ψ[𝑛]|𝑇̂ + 𝑊̂ee|Ψ[𝑛]⟩ − ⟨Φ[𝑛]|𝑇̂ + 𝑊̂ee|Φ[𝑛]⟩.                  (1.27) 

From these definitions, we find that the difference in the true kinetic energy functional and 

that of the non-interacting system, 𝑇[𝑛] − 𝑇𝑠[𝑛], is absorbed by the correlation functional and 

thus the correlation functional is comprised of the kinetic energy contribution and potential 

energy contribution. 

𝐸c[𝑛] = 𝑇c[𝑛] + 𝑈c[𝑛],                                                                               (1.27) 

where 
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𝑇c[𝑛] ≡ ⟨Ψ[𝑛]|𝑇̂|Ψ[𝑛]⟩ − ⟨Φ[𝑛]|𝑇̂|Φ[𝑛]⟩ 

𝑈c[𝑛] ≡ ⟨Ψ[𝑛]|𝑊̂ee|Ψ[𝑛]⟩ − ⟨Φ[𝑛]|𝑊̂ee|Φ[𝑛]⟩. 

   Note that this is a rather old definition of the exchange-correlation functional but recently 

this “dirty” definition, dirty in that the kinetic energy and the potential energy having different 

scaling properties are mixed, is avoided by introducing the adiabatic connection formula, as 

explained below. 

 

Kohn-Sham equation 

   It is well described in many textbooks on DFT how to determine the Slater determinant. 

It is determined by solving a Schrödinger-like equation called Kohn-Sham equation. The 

equation can be derived by rewriting the minimization with respect to Φ by the minimization 

with respect to the single-electron orbitals 𝜓𝑖 that constitute the Slater determinant. Within 

the scheme of the unrestricted closed-shell description of the Slater determinant, 𝜓𝑖(𝒙) =

𝜙𝑖(𝒓)𝜒𝜎𝑖
(𝜎), the functional to be minimized is 

𝐸[{𝜙𝑖}] = ∑ ∫ 𝜙𝑖
∗(𝒓) (−

𝛁2

2
+ 𝑣ne(𝒓))

𝑁

𝑖

𝜙𝑖(𝒓)𝑑𝒓 + 𝐸Hxc[𝑛]                      (1.28) 

which is very similar to the Hartree-Fock theory. The variation is usually done by keeping the 

orthonormal condition and the relation 

𝑛(𝒓) = ∑|𝜙𝑖(𝒓)|2

𝑁

𝑖

.                                                                                         (1.29) 

When the variation is done using the method of Lagrange multiplier, 

ℒ[{𝜙𝑖}] =  𝐸[{𝜙𝑖}] − ∑ 𝜀𝑖(∫ 𝜙𝑖
∗(𝒓)𝜙𝑖(𝒓)𝑑𝒓 − 1)

𝑁

𝑖

,                                    (1.30) 

as 

𝛿ℒ[{𝜙𝑖}]

𝛿𝜙𝑖
∗(𝒓)

= 0,                                                                                            (1.31) 

we can obtain the differential equation 

(−
1

2
∇2 + 𝑣ne(𝒓)) 𝜙𝑖(𝒓) +

𝛿𝐸Hxc[𝑛]

𝛿𝜙𝑖
∗(𝒓)

= 𝜀𝑖𝜙𝑖(𝒓).                                       (1.32) 

The left-hand side of the equation can be rewritten as 

(−
1

2
∇2 + 𝑣ne(𝒓)) 𝜙𝑖(𝒓) + ∫

𝛿𝐸Hxc[𝑛]

𝛿𝑛(𝒓′)
 
𝛿𝑛(𝒓′)

𝛿𝜙𝑖
∗(𝒓)

𝑑𝒓′ = (−
1

2
∇2 + 𝑣ne(𝒓) + 𝑣Hxc(𝒓)) 𝜙𝑖(𝒓). 

Therefore, the differential equation becomes 

(−
1

2
∇2 + 𝑣ne(𝒓) + 𝑣Hxc(𝒓)) 𝜙𝑖(𝒓) = 𝜀𝑖𝜙𝑖(𝒓).                                         (1.35) 

This is called as the Kohn-Sham equation. 
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Self-consistent field 

Note that the effective potential 𝑣eff(𝒓) ≡ 𝑣ne(𝒓) + 𝑣Hxc(𝒓) is a functional of the density 

𝑛(𝒓), so that the Kohn-Sham equation needs to be solved by keeping the self-consistency 

between the density used to construct the effective potential and that resulting from (1.29). 

This makes the calculation much more difficult than the one-electron Schrödinger equation. 

At this point, it is very instructive to compare the Kohn-Sham equation and the Hartree-Fock 

equation: The latter is 

(−
1

2
∇2 + 𝑣ne(𝒓) + 𝑣H(𝒓) + 𝑣x(𝒓)) 𝜙𝑖(𝒓) = 𝜀𝑖𝜙𝑖(𝒓), 

where 

𝑣x(𝒓)𝜙𝑖(𝒓) = − ∑ ∫
𝜙𝑗

∗(𝒓′)𝜙𝑖(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓′ 𝜙𝑗(𝒓)

𝑁

𝑗

= − ∫
∑ 𝜙𝑗

∗(𝒓′)𝜙𝑗(𝒓)𝑗

|𝒓 − 𝒓′|
𝜙𝑖(𝒓′)𝑑𝒓′

≡ ∫ 𝑣𝑥(𝒓, 𝒓′)𝜙𝑖(𝒓′)𝑑𝒓′ 

is non-local. The non-local nature of the Hartree-Fock has a significant meaning in that 

contributions of the 𝑖-th orbital to the Hartree potential 𝑣H(𝐫) and the exchange potential 

𝑣x(𝒓, 𝒓′) are the same except for the different sign. That is, the contributions of the 𝑖-th 

orbital are canceled out when determining the 𝑖-th orbital. This property of the effective 

potential is called self-interaction free. 

 

Local density approximation for the exchange-correlation 

   The exchange-correlation functional, given by Eqs. (1.26-1.27), are generally non-local; 

non-locality of the exchange was shown explicitly in the above and that of the correlation is 

more complicated as shown below. Non-locality makes the self-consistent calculation very 

complicated. In the early stage of DFT, therefore, people searched for a local form of the 

exchange-correlation. 

   The simplest form for the exchange can be found in the literature as the Thomas Fermi 

exchange or Dirac exchange as 

𝐸x[𝑛(𝑟)] = −
3

4
(

3

𝜋
)

1
3

∫ 𝑛(𝒓)
4
3 𝑑𝒓.                                                  (1.53) 

Later, elaborate calculation was done for homogeneous electron gas, where the electron 

density is constant, using various values for the electron density 𝑛 and the calculated energy 

density was related to 𝑛 to find a better local form for the exchange-correlation. The resulting 

functional was called “local density approximation (LDA)”. LDA was found to reasonably well 
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reproduce the energy of many weakly interacting electrons and was used to predict stability, 

phonon, dynamics of materials. 

 

How to deal with spin 

   You may wonder how to deal with spin. Or, you may alternatively want to use an 

unrestricted Hartree-Fock form for the non-interacting system (see discussion around Eq. 

(1.28)). The corresponding Hohenberg Kohn functional can be defined as 

𝐹[𝑛↑, 𝑛↓] = min
Ψ→𝑛↑,𝑛↓

⟨Ψ|𝑇̂ + 𝑊̂ee|Ψ⟩.                                            (1.57) 

The search is done for normalized antisymmetric functions Ψ that yields 

𝑛↑(𝒓) = 𝑁 ∭ |Ψ(𝒓 ↑, 𝒙2, ⋯ , 𝒙𝑁)𝑑𝒙2 ⋯ 𝑑𝒙𝑁                               (1.58𝑎) 

and 

𝑛↓(𝒓) = 𝑁 ∭ |Ψ(𝒓 ↓, 𝒙2, ⋯ , 𝒙𝑁)𝑑𝒙2 ⋯ 𝑑𝒙𝑁 .                              (1.58𝑏) 

A KS scheme can be derived by decomposing 𝐹[𝑛↑, 𝑛↓]  into the kinetic, Hartree, and 

exchange-correlation parts, where the kinetic part is defined as 

𝑇𝑠[𝑛↑, 𝑛↓] = min
Φ→𝑛↑,𝑛↓

⟨Φ|𝑇̂|Φ⟩.                                              (1.60) 

The Slater determinant is composed from the one-electron orbital of the form 

𝜓𝑖(𝒙) = 𝜙𝑖𝜎𝑖
(𝒓)𝜒𝜎𝑖

(𝜎) 

and then the KS equation can be derived separately for each spin state 

(−
1

2
∇2 + 𝑣ne(𝒓) + 𝑣H(𝒓) + 𝑣xc,↑(𝒓)) 𝜙𝑖↑(𝒓) = 𝜀𝑖↑(𝒓)𝜙𝑖↑(𝒓)               (1.61𝑎) 

(−
1

2
∇2 + 𝑣ne(𝒓) + 𝑣H(𝒓) + 𝑣xc,↓(𝒓)) 𝜙𝑖↓(𝒓) = 𝜀𝑖↓(𝒓)𝜙𝑖↓(𝒓)               (1.61𝑏) 

The exchange-correlation potentials are given in terms of the derivative with respect to the 

electron densities as shown in Eqs. (1.62)-(1.63) of the article. It was shown by Oliver and 

Perdew that the spin-dependent exchange functional 𝐸x[𝑛↑, 𝑛↓] can be expressed rigorously 

as 

𝐸x[𝑛↑, 𝑛↓] =
1

2
(𝐸x[2𝑛↑] + 𝐸x[2𝑛↓]),                                               (1.64) 

because, in the non-relativistic case, 

𝐸x[𝑛↑, 𝑛↓] = 𝐸x[𝑛↑, 0] + 𝐸x[0, 𝑛↓]                                                    (S. 8) 

holds and, therefore, when using the spin-unpolarized case, 𝑛↑ = 𝑛↓ = 𝑛/2, we get 
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𝐸x[𝑛, 0] = 𝐸x[0, 𝑛] =
1

2
𝐸x[2𝑛].                                                       (S. 9) 

using the spin-scaling relation which states that the up-spin density and down-spin density 

are uncoupled to form the exchange functional. 

   This formalism for the spin density functional theory suggests a possibility to construct 

extended formalisms as well. Indeed, by describing the HK functional in terms of the density 

and the current density, the current density functional theory was developed and was applied 

to electrons under excited states. One can also describe the HK functional using the electric 

field and magnetic flux to simulate the electrons under inhomogeneous electromagnetic field. 

In those cases, it is not obvious if one can prepare appropriate exchange-correlation functional. 

If one wants to follow the procedure adopted in LDA, one needs to do an accurate simulation 

under the inhomogeneous conditions and establish the functional relation. This is not always 

possible especially when one needs to construct a non-local functional. 

 

Density matrix formalism 

   As a step to extend LDA, it is convenient to adopt the density matrix formalism or the 

Green’s function formalism. Let us, for the moment, focus on the former formalism. In that 

case, we need to investigate up to the second order density matrix because we are studying 

electrons interacting through two-body interaction, that is the Coulombic interaction. 

   The two-body density matrix is defined as 

𝑛2(𝒓1, 𝒓𝟐) = 𝑁(𝑁 − 1) ∭|Ψ[𝑛](𝒙1, ⋯ , 𝒙𝑁)|2𝑑𝜎1𝑑𝜎2𝑑𝒙3 ⋯ 𝑑𝒙𝑁 ,                      (2.1) 

although factor 1/2 is multiplied in many literatures. This density matrix corresponds to the 

probability of finding two electrons simultaneously at 𝒓1  and 𝒓2 . This density matrix is 

particularly important because the electron-electron interaction functional can be written 

using 𝑛2 as 

⟨Ψ[𝑛]|𝑊̂ee|Ψ[𝑛]⟩ =
1

2
∬

𝑛2(𝒓1, 𝒓2)

|𝒓1 − 𝒓2|
𝑑𝒓1𝑑𝒓2 .                                             (2.2) 

The two-body density matrix is conventionally decomposed into the product of the density 

and the rest as 

𝑛2(𝒓1, 𝒓2) = 𝑛(𝒓1)𝑛(𝒓2) + 𝑛2,xc(𝒓1, 𝒓2).                                            (2.3) 

The second term in the right-hand side is called the exchange-correlation pair density, which 

can be further decomposed as 

𝑛2,xc(𝒓1, 𝒓2) = 𝑛(𝒓1)𝑛xc(𝒓1, 𝒓2),                                                               (2.4) 

where 𝑛xc  is called the exchange-correlation hole. We call this as a hole because of the 

existence of the following sum rule 
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∫ 𝑛xc(𝒓1, 𝒓2)𝑑𝒓2 = −1.                                                                                       (2.6) 

That is, the value is negative when integrated over the whole space. The electron-electron 

interaction energy can be rewritten as 

⟨Ψ[𝑛]|𝑊̂ee|Ψ[𝑛]⟩ =
1

2
∬

𝑛(𝒓1)𝑛(𝒓2)

|𝒓1 − 𝒓2|
𝑑𝒓1𝑑𝒓2 +

1

2
∬

𝑛(𝒓1)𝑛xc(𝒓1, 𝒓2)

|𝒓1 − 𝒓2|
𝑑𝒓1𝑑𝒓2. 

This indicates that the (potential energy contribution) of exchange-correlation energy is given 

by the interaction with its exchange-correlation hole. 

 

Exercise  

Let us solve a Hooke’s atom problem and compute the exchange-correlation hole. The system 

consists of two electrons confined in a Harmonic potential and the Hamiltonian is written as 

𝐻̂ = −
1

2
∇1

2 −
1

2
∇2

2 +
1

2
𝑘(𝑟1

2 + 𝑟2
2) +

1

|𝒓1 − 𝒓2|
 

which is a model He atom. Using the center of mass coordinate 𝑹 = (𝒓1 + 𝒓2)/2 and the 

relative coordinate 𝒖 = 𝒓2 − 𝒓1, the Hamiltonian becomes 

𝐻̂ = −
1

4
∇𝑹

2 − ∇𝒖
2 + 𝑘𝑅2 +

1

4
𝑘𝑢2 +

1

𝑢
, 

so that the wave function can be decomposed into a product Ψ(𝐫1, 𝒓2) = 𝜒(𝑹)Φ(𝒖) and the 

Schrödinger equation becomes 

(−
1

4
∇𝑹

2 + 𝑘𝑅2) 𝜒(𝑹) = 𝐸𝑹𝜒(𝑹) 

(−∇𝒖
2 +

1

4
𝑘𝑢2 +

1

𝑢
) Φ(𝒖) = 𝐸𝒖Φ(𝒖). 

The first differential equation provides the well-known solution 

𝜒𝒏(𝑹) =
1

√2𝑛𝑥𝑛𝑦𝑛𝑧𝑛𝑥! 𝑛𝑦! 𝑛𝑧!
(

2√𝑘

𝜋
)

3
4

𝑒−√𝑘𝑅2
𝐻𝑛𝑥

(21/2𝑘1/4𝑅𝑥)𝐻𝑛𝑦
(21/2𝑘1/4𝑅𝑦)𝐻𝑛𝑧

(21/2𝑘1/4𝑅𝑧) 

𝐸𝑹,𝒏 = (𝑛𝑥 + 𝑛𝑦 + 𝑛𝑧 +
3

2
) √𝑘 

The second one is centrosymmetric and the solution should have a form 

𝑅𝑙(𝑢)𝑌𝑙𝑚(𝑢̅) 

and the equation for the radial part is 

(−
1

𝑢2

𝑑

𝑑𝑢
(𝑢2

𝜕

𝑑𝑢
) +

𝑙(𝑙 + 1)

𝑢2
+

1

4
𝑘𝑢2 +

1

𝑢
) 𝑅𝑙(𝑢) = 𝐸𝒖,𝑙𝑅𝑙(𝑢) 

By rewriting 𝑅𝑙(𝑢) 
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𝑅𝑙(𝑢) =
𝑒−

√𝑘
4

𝑢2

𝑇𝑙(𝑢)

𝑢
, 

we obtain 

(−
𝑑2

𝑑𝑢2
+ √𝑘𝑢

𝑑

𝑑𝑢
+

𝑙(𝑙 + 1)

𝑢2
+

√𝑘

2
+

1

𝑢
) 𝑇𝑙(𝑢) = 𝐸𝒖,𝑙𝑇𝑙(𝑢). 

Following the Frobenius method, let us express the regular solution for 𝑇𝑙(𝑢) as 

𝑇𝑙(𝑢) = 𝑢𝑙+1 ∑ 𝑎𝑖𝑢𝑖

∞

𝑖=0

 

and require that the recursion of the coefficient 𝑎𝑖 

−(𝑖 + 𝑙 + 1)(𝑖 + 𝑙)𝑎𝑖𝑢
𝑖+𝑙−1 + √𝑘(𝑖 + 𝑙 + 1)𝑎𝑖𝑢𝑖+𝑙+1 + 𝑙(𝑙 + 1)𝑎𝑖𝑢

𝑖+𝑙−1 + (
√𝑘

2
− 𝐸𝒖,𝑙) 𝑎𝑖𝑢𝑖+𝑙+1

+ 𝑎𝑖𝑢𝑖+𝑙 = 0 

to terminate at some point of 𝑖. The recursion is rewritten as 

[−(𝑖 + 𝑙 + 2)(𝑖 + 𝑙 + 1)𝑎𝑖+1 + √𝑘(𝑖 + 𝑙)𝑎𝑖−1 + 𝑙(𝑙 + 1)𝑎𝑖+1 + (
√𝑘

2
− 𝐸𝒖,𝑙) 𝑎𝑖−1 + 𝑎𝑖] 𝑢𝑖−1 = 0 

so that 

𝑎𝑖+1 =
𝑎𝑖 + (√𝑘 (𝑖 + 𝑙 +

1
2) − 𝐸𝒖,𝑙) 𝑎𝑖−1

(𝑖 + 1)(𝑖 + 2𝑙 + 2)
 

𝑎1 =
𝑎0

2(𝑙 + 1)
, 𝑎2 =

𝑎0

2(2𝑙 + 3)
(

1

2(𝑙 + 1)
+ √𝑘 (𝑙 +

3

2
) − 𝐸𝒖,𝑙). 

𝑎3 =
𝑎2 + (√𝑘 (𝑙 +

5
2) − 𝐸𝒖,𝑙) 𝑎1

3(2𝑙 + 4)
 

The termination condition depends on the value of √𝑘, and the simplest solution can be 

found for those parameters which vanish 𝑎2 and 𝑎3: The result is 

√𝑘 =
1

2(𝑙 + 1)
 

and 

𝐸𝒖,𝑙 =
2𝑙 + 5

4(𝑙 + 1)
. 

Namely, for the harmonic potential of strength 𝑘 = 4(𝑙 + 1)2, analytical solution can be found. 

(Other solutions can be found by vanishing 𝑎 with higher indices.) 

The radial wave function is 

𝑅𝑙(𝑢) = 𝑢𝑙 (1 +
1

2(𝑙 + 1)
𝑢) 𝑒

−
𝑢2

8(𝑙+1) 

and thus, the wave function for the relative coordinate is 
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Φ(𝒖) = 𝑢𝑙 (1 +
1

2(𝑙 + 1)
𝑢) 𝑒

−
𝑢2

8(𝑙+1)𝑌𝑙𝑚(𝒖̅). 

When multiplied by the state with the lowest energy for the center of mass 𝜒𝟎(𝑹) is 

𝜒𝟎(𝑹)Φ(𝒖) = (
1

𝜋(𝑙 + 1)
)

3
4

𝑒
−

𝑅2

2(𝑙+1)𝑢𝑙 (1 +
1

2(𝑙 + 1)
𝑢) 𝑒

−
𝑢2

8(𝑙+1)𝑌𝑙𝑚(𝒖̅)

= (
1

𝜋(𝑙 + 1)
)

3
4

𝑒
−

(𝑟1
2+𝑟2

2)
4(𝑙+1) |𝒓2 − 𝒓1|𝑙 (1 +

1

2(𝑙 + 1)
|𝒓2 − 𝒓1|) 𝑌𝑙𝑚(𝒓2 − 𝒓1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ). 

After normalization, 

Ψ(𝒓1, 𝒓2) = 𝑁𝑙𝑒
−

(𝑟1
2+𝑟2

2)
4(𝑙+1) |𝒓2 − 𝒓1|𝑙 (1 +

1

2(𝑙 + 1)
|𝒓2 − 𝒓1|) 𝑌𝑙𝑚(𝒓2 − 𝒓1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ). 

Pair density is then obtained as 

𝑛2(𝒓1, 𝒓2) = 𝑁𝑙
2𝑒

−
(𝑟1

2+𝑟2
2)

2(𝑙+1) |𝒓2 − 𝒓1|2𝑙 (1 +
1

2(𝑙 + 1)
|𝒓2 − 𝒓1|)

2

∑ |𝑌𝑙𝑚(𝒓2 − 𝒓1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )|2

𝑙

𝑚=−𝑙

= 𝑁𝑙
2

2𝑙 + 1

4𝜋
𝑒

−
(𝑟1

2+𝑟2
2)

2(𝑙+1) |𝒓2 − 𝒓1|2𝑙 (1 +
1

2(𝑙 + 1)
|𝒓2 − 𝒓1|)

2

 

after taking average over the degenerate states. The electron density is obtained as 

2𝑁𝑙
2 ∭

2𝑙 + 1

4𝜋
𝑒

−
(𝑟1

2+𝑟2)
2(𝑙+1) |𝒓 − 𝒓1|2𝑙 (1 +

1

2(𝑙 + 1)
|𝒓 − 𝒓1|)

2

𝑑𝒓1

= 2𝑁𝑙
2 ∭

2𝑙 + 1

4𝜋
𝑒

−
2𝑟2+𝑢2−2𝑟𝑢 cos 𝜃

2(𝑙+1) 𝑢2𝑙 (1 +
1

2(𝑙 + 1)
𝑢)

2

2𝜋𝑢2 sin 𝜃 𝑑𝑢𝑑𝜃. 

Therefore, 

𝑛(𝒓) = 2𝑁0
2 (𝑒−𝑟2

+ 𝑒−
𝑟2

2 √
𝜋

2
(

7

4
+

𝑟2

4
+ (𝑟 +

1

𝑟
) erf (

𝑟

√2
))) 

for 𝑙 = 0 and 

𝑛(𝒓) = 2𝑁1
2 (6𝑒−

𝑟2

2 (10 + 𝑟2) +
3√𝜋𝑒−

𝑟2

4 (156𝑟 + 36𝑟3 + 𝑟5 + 8(12 + 12𝑟2 + 𝑟4) erf (
𝑟
2)

8𝑟
) 

for 𝑙 = 1. The exchange-correlation hole is then obtained from 

𝑛xc(𝒓2; 𝒓1) =
𝑛2(𝒓1, 𝒓2) − 𝑛(𝑟1)𝑛(𝑟2)

𝑛(𝑟1)
. 

For 𝑙 = 0, it looks like 
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Here the first electron is located at 𝒓1 = (1,0,0) and the coordinate of the second electron is 

taken as 𝒓2 = (𝑥, 𝑦, 0) . The aim of KS-DFT is to establish the relationship between the 

electron density (right; unnormalized) and the (exchange-)correlation hole (left). For 𝑙 = 1, 

the exchange-correlation hole looks like 

 

𝑙 = 1 is an excited state, so that this is outside the scope of DFT strictly. 

 

Returning to the main steam, let us continue the discussion on the exchange-correlation hole. 

We can separate the exchange-correlation functional into exchange and correlation. This can 

be done by using the pair density of the Kohn-Sham single-determinant Φ[𝑛] as 

𝑛2,KS(𝒓1, 𝒓2) = 𝑛(𝒓1)𝑛(𝒓2) + 𝑛(𝒓1)𝑛x(𝒓1, 𝒓2) 

The exchange hole can be written using the Kohn-Sham orbitals as 
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𝑛x(𝑟1, 𝑟2)𝑛(𝑟1) = − ∑ |∑ 𝜙𝑗
∗(𝑟1𝜎)𝜙𝑗(𝑟2𝜎)

𝑁

𝑗

|

2

𝜎

, 

so that it is negative everywhere. 

In weakly correlation cases, the exchange hole is much larger in magnitude than the 

correlation hole in general. Therefore, the major task of DFT in those systems is to find an 

appropriate functional form for the exchange plus relatively small contribution from the 

correlation. In practice, finding the form for the correlation is much more difficult. Note that, 

when using the above form for the exchange, which is implicitly the functional of the electron 

density via the Kohn-Sham orbitals, one needs to try to find the correlation functional only; 

when, on the other hand, when using a local (and approximate) value, one usually tries to find 

the form for the exchange-correlation without separating it into pieces. 

 

Adiabatic connection 

   Here I introduce the important technique called adiabatic connection, with which to 

redefine the exchange-correlation. In my view, this is extremely important in connecting DFT 

to formally rigorous many-body theories. 

   In this scheme, we introduce a path connecting between the non-interacting KS system 

and the target system of interest while keeping the density constant. The density is kept equal 

to the exact one. The Hamiltonian changes via the path as 

𝐻̂𝜆 = 𝑇̂ + 𝜆𝑊̂ee + V̂𝜆,                                                                       (2.18) 

where V̂𝜆 is the external local potential operator playing a role to keep the density constant. 

Note that the Hamiltonian is the Kohn-Sham one when 𝜆 is zero and is the physical one when 

it is 1. Along the line we have discussed, we can introduce the HK functional for each 𝜆. 

𝐹𝜆[𝑛] = min
Ψ→𝑛

⟨Ψ|𝑇̂ + 𝜆𝑊̂ee|Ψ⟩ = ⟨Ψλ[𝑛]|𝑇̂ + 𝜆𝑊̂ee|Ψλ[𝑛]⟩                         (2.19) 

This functional can be decomposed into 

𝐹𝜆[𝑛] = 𝑇𝑠[𝑛] + 𝐸H
𝜆[𝑛] + 𝐸xc

𝜆 [𝑛]                                                                        (2.20) 

with 

𝐸H
𝜆[𝑛] =

1

2
∬

𝑛(𝒓1)𝑛(𝒓2)

|𝒓1 − 𝒓2|
𝜆𝑑𝒓1𝑑𝒓2 = 𝜆𝐸H[𝑛],                                               (2.21) 

𝐸x
𝜆[𝑛] = ⟨Φ[𝑛]|𝜆𝑊̂ee|Φ[𝑛]⟩ − 𝐸H

𝜆[𝑛] = 𝜆𝐸x[𝑛]                                               (2.22) 

𝐸c
𝜆[𝑛] = ⟨Ψλ[𝑛]|𝑇̂ + 𝜆𝑊̂ee|Ψλ[𝑛]⟩ − ⟨Φ[𝑛]|𝑇̂ + 𝜆𝑊̂ee|Φ[𝑛]⟩.                                 (2.23) 

The last equation can be used to derive 

𝜕𝐸c
𝜆[𝑛]

𝜕𝜆
= ⟨Ψλ[𝑛]|𝑊̂ee|Ψλ[𝑛]⟩ − ⟨Φ[𝑛]|𝑊̂ee|Φ[𝑛]⟩,                                 (2.24) 

where the Hellmann Feynman theorem has been used. Then, we can derive 
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𝐸𝑐[𝑛] = ∫⟨Ψλ[𝑛]|𝑊̂ee|Ψλ[𝑛]⟩𝑑𝜆

1

0

− ⟨Φ[𝑛]|𝑊̂ee|Φ[𝑛]⟩.                                 (2.25) 

Therefore, only the interaction energy (not the kinetic energy) contribute to the formulation; 

we have thus successfully avoided the treatment of the kinetic energy part. We can further 

rewrite the correlation energy as 

𝐸𝑐[𝑛] =
1

2
∫ 𝑑𝜆 ∬

𝑛(𝒓1)𝑛𝑐
𝜆(𝒓1, 𝒓2)

|𝒓𝟏 − 𝒓2|

1

0

𝑑𝒓1𝑑𝒓2                                                    (2.26) 

or 

𝐸𝑐[𝑛] =
1

2
∬

𝑛(𝒓1)𝑛̅𝑐(𝒓1, 𝒓2)

|𝒓𝟏 − 𝒓2|
𝑑𝒓1𝑑𝒓2                                                    (2.27) 

where 

𝑛̅𝑐(𝒓1, 𝒓2) = ∫ 𝑑𝜆𝑛𝑐
𝜆(𝒓1, 𝒓2)

1

0

. 

This indicates that it is the 𝜆-averaged density that needs to be handled. Later, I will show 

that one can handle it using the fluctuation dissipation theorem. 

 

Fractional number of electrons 

   With DFT, it is plausible if one can consider the system under finite temperatures, where 

the system contains thermally excited state and thus the theory is no more a ground-state one. 

It is also plausible if one can study a subsystem interacting with the host material, and in 

addition, exchanging electrons with the host. Extension of DFT in those directions were 

discussed in the past. I will briefly explain the density functional theory for fractional number 

of electrons as a step towards those problems. 

   Let us denote the number as 𝒩 which is also written as 𝒩 = 𝑁 − 1 + 𝑓 with 𝑁 ∈ 𝕀 and 

0 ≤ 𝑓 ≤ 1. The total-energy is described as 

𝐸0
𝒩 = min

Γ̂
Tr[Γ̂(𝑇̂ + 𝑊̂ee + 𝑉̂ne)],                                                   (2.30) 

using the ensemble density matrix defined as 

Γ̂ = (1 − 𝑓)|Ψ𝑁−1⟩⟨Ψ𝑁−1| + 𝑓|Ψ𝑁⟩⟨Ψ𝑁|.                                 (2.31) 

(One may use many states with different number of electrons as well.) The variation is done 

for Ψ𝑁−1 and Ψ𝑁, by which the ensemble density matrix is obtained as 

Γ̂0 = (1 − 𝑓)|Ψ0
𝑁−1⟩⟨Ψ0

𝑁−1| + 𝑓|Ψ0
𝑁⟩⟨Ψ0

𝑁|.                                  (2.32) 

Then the total-energy can be described as 
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𝐸0
𝒩 = (1 − 𝑓)𝐸0

𝑁−1 + 𝑓𝐸0
𝑁. 

From this definition, it is clear that the total-energy has a derivative discontinuity as 

𝑑𝐸0
𝒩

𝑑𝒩
= {

𝐸0
𝑁 − 𝐸0

𝑁−1 ≡ −𝐼𝑁 when 𝑁 − 1 < 𝒩 < 𝑁

𝐸0
𝑁+1 − 𝐸0

𝑁 ≡ −𝐴𝑁 when 𝑁 < 𝒩 < 𝑁 + 1
 

Usually, the ionization 𝐼𝑁 and the affinity 𝐴𝑁 are different, so that the electronic chemical 

potential 𝑑𝐸0
𝒩 𝑑𝒩⁄ ≡ 𝜇  is discontinuous at the integer number: This is called integer 

discontinuity. Note that the fundamental gaps, or the HOMO-LUMO gap, is defined as 

𝐼𝑁 − 𝐴𝑁 ≡ 𝐸gap
𝑁 . 

 

   DFT for fractional number of electrons assumes existence of universal HK functional 

𝐹[𝑛] = min
Γ̂→𝑛

Tr[Γ̂(𝑇̂ + 𝑊̂ee)].                                                               (2.38) 

This can be decomposed, in the KS theory, into 

𝐹[𝑛] = 𝑇𝑠[𝑛] + 𝐸Hxc[𝑛]                                                                        (2.39) 

where the Kohn-Sham non-interacting kinetic energy is given as 

𝑇𝑠[𝑛] = min
Γ̂s→𝑛

Tr[Γ̂𝑠𝑇̂], 

and the ensemble non-interacting density matrix is 

Γ̂𝑠 = (1 − 𝑓) |Φ𝑁−1,𝑓⟩⟨Φ𝑁−1,𝑓| + 𝑓|Φ𝑁,𝑓⟩⟨Φ𝑁,𝑓|.                                    (2.41) 

The total-energy can also be described using the Kohn-Sham orbitals in a way very similar to 

the one shown above, but here I show the resulting equations. By introducing partial 

occupation number of each KS orbitals 𝑛𝑖, the total-energy can be described as 

𝐸 = ∑ 𝑛𝑖

𝑁

𝑖

∫ 𝜙𝑖
∗(𝒓) (−

1

2
∇2 + 𝑣ne(𝒓)) 𝜙𝑖(𝒓)𝑑𝒓 + 𝐸Hxc[𝑛],                           (2.42) 

with the density 

𝑛(𝒓) = ∑ 𝑛𝑖|𝜙𝑖(𝒓)|2

𝑁

𝑖

.                                                                                                 (2.43) 

Note that the occupation number satisfies the condition that 𝑛𝑖 = 1 for 𝑖 ≤ 𝑁 − 1 and 𝑛𝑁 =

𝑓. The KS equation is thereby unchanged 

(−
1

2
∇2 + 𝑣s(𝒓)) 𝜙𝑖(𝒓) = 𝜀𝑖𝜙𝑖(𝒓)                                                (2.44) 

𝑣s(𝒓) = 𝑣ne(𝒓) +
𝛿𝐸Hxc[𝑛]

𝛿𝑛(𝒓)
.                                                (2.45) 

It should be reminded, however, the derivative with respect to the electron density becomes 

ambiguous when change in the number of electrons is allowed in the formalism. Therefore 

𝛿𝐸Hxc[𝑛] should be understood in terms of 
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𝛿𝐸Hxc[𝑛] = ∫ (
𝛿𝐸Hxc[𝑛]

𝛿𝑛(𝒓)
+ const) 𝛿𝑛(𝒓)𝑑𝒓                                              (2.46) 

and the change in the number of electrons should be carefully taken into account to determine 

the constant, as will be shown in the next subsection. From the above equations, we can derive 

𝜕𝐸

∂𝑛𝑖
= 𝜀𝑖 .                                                                                    (2.47) 

This is called Janak theorem. Recall the Koopmans theorem of the Hartree-Fock, which is 

similar to Eq. (2.47) but is different in that the differentiation is replaced by finite difference 

in the Koopmans. 

 

LUMO energy and the derivative discontinuity 

From the Janak theorem, the derivative at a number slightly larger than an integer is, 

(
𝜕𝐸0

𝒩

𝜕𝒩
)

𝑁+𝛿

= 𝜀HOMO
𝑁+𝛿 ,                                                                  (2.54) 

where the right-hand side is equal to the HOMO energy at 𝑁 + 1-th orbital. Since Eq. (2.54) 

is identical to the definition of the affinity, we have 

𝜀HOMO
𝑁+𝛿 = −𝐴𝑁.                                                                     (2.55) 

This means that the affinity can be calculated using the HOMO energy. But, actually, this is 

unrelated to the LUMO energy. To see it, let us write the HOMO orbital in terms of the KS 

orbitals as 

𝜀HOMO
𝑁+𝛿 = ∫ 𝜙HOMO

𝑁+𝛿 (𝒓)∗ (−
1

2
∇2 + 𝑣𝑠

𝑁+𝛿(𝒓)) 𝜙HOMO
𝑁+𝛿 (𝒓)𝑑𝒓.                (2.56) 

The naive counterpart will be the LUMO energy of a system with a number slightly smaller 

than 𝑁. The corresponding LUMO energy is 

𝜀LUMO
𝑁−𝛿 = ∫ 𝜙LUMO

𝑁−𝛿 (𝒓)∗ (−
1

2
∇2 + 𝑣𝑠

𝑁−𝛿(𝒓)) 𝜙LUMO
𝑁−𝛿 (𝒓)𝑑𝒓.                 (2.57) 

With decreasing 𝛿 → 0+, 𝑣𝑠
𝑁+𝛿(𝒓) and 𝑣𝑠

𝑁−𝛿(𝒓) approach the potentials that are equal to 

each other except for the additive constant, 𝑣𝑠
𝑁+𝛿(𝒓) − 𝑣𝑠

𝑁−𝛿(𝒓) ≡ Δxc
𝑁 . Therefore, 

𝜀HOMO
𝑁+𝛿 = 𝜀LUMO

𝑁−𝛿 + Δxc
𝑁                                                                                   (2.58) 

holds. Namely, after taking the limit (𝛿 → 0), 

𝜀LUMO
𝑁 = −𝐴𝑁 − Δxc

𝑁 .                                                                               (2.60) 

This allows to rewrite the fundamental gap in terms of the derivative discontinuity as 

𝐸gap
𝑁 = 𝜀LUMO

𝑁 − 𝜀HOMO
𝑁 + Δxc

𝑁 .                                                                      (2.63) 

The constant appeared in the derivation of HK theorem thus turns out to be the derivative 

discontinuity. 
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Existing approximate functionals 

   There are many different functionals of different level of approximations. Usually, there is 

a trend that the more complex the functional is the more accurate the result is, but this does 

not mean superiority in all respects. A functional can be more accurate in one respect but is 

less accurate in the other respects. Let us briefly survey popular functionals. 

Local density approximation (LDA): The exchange-correlation of LDA can be written as 

𝐸xc
LDA[𝑛] = ∫ 𝑛(𝑟)𝜀xc

uniform gas
(𝑛(𝒓))𝑑𝒓. 

𝜀 is obtained by doing a Monte Carlo simulation of uniform electron gas of a fixed electron 

density. The result of the exchange-correlation energy is fitted to a form 

−
3

4
(

3

𝜋
)

1
3

𝑛
1
3(𝒓) + 𝜀𝑐(𝑟𝑠(𝑛(𝒓))) 

𝜀𝑐(𝑟𝑠) = {

𝐴 ln 𝑟𝑠 + 𝐵 + 𝐶 𝑟𝑠 ln 𝑟𝑠      when 𝑟𝑠 ≤ 𝑟𝑠,0

𝑎

𝑟𝑠
+

𝑏

𝑟𝑠
3/2

                              when 𝑟𝑠 > 𝑟𝑠,0
 

where 𝑟𝑠 = (
3

4𝜋𝑛
)

1

3
. 

Generalized gradient approximation (GGA): LDA is based on the uniform electron gas and 

therefore is more accurate for a system having more uniform electron density. This means 

LDA favors too much metallic systems over insulating systems and favors also condensed 

phases over isolated phases like an atom. This is a serious drawback when comparing phases 

of different electronic structure. It is also known that the adsorption energy on the surface or 

atomization energy is too large and is outside of the required chemical accuracy. As a method 

to overcome it, gradient of the electron density is incorporated into the functional. A natural 

form for the gradient corrected exchange-correlation functional is obtained by expanding by 

the dimensionless parameter ∇𝑛(𝒓) 𝑛(𝒓)4/3⁄  as 

𝐸xc
GEA[𝑛] = 𝐸xc

LDA[𝑛] + ∫ 𝐶xc(𝑛(𝒓))𝑛(𝒓)
4
3 (

∇𝑛(𝒓)

𝑛(𝒓)
4
3

)

2

𝑑𝒓,                            (3.10) 

The expansion parameter, however, can be large in some part of the target system making the 

expansion breaks down. In this context, people have tried to construct a functional so that 

𝐸xc
GGA[𝑛] = ∫ 𝑓(𝑛(𝒓), ∇𝑛(𝒓))𝑑𝒓.                                                                       (3.11) 

Note that LDA uses a local approximation to the exchange-correlation, in this sense GGA is 

said to be a semi-local approximation scheme for the exchange-correlation. Some works nicely 

at crystalline phases and others at surfaces, and so on. For details, please read the textbooks 
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shown at the beginning. 

 

GGA[#1] B88 exchange functional: Becke 88 was constructed to reproduce the nonlocal 

exchange functional (Eq. (1.26)), such as the asymptotic behavior of the exchange energy 

per particle and the value of the nonlocal exchange energy of rare-gas atoms. 

 

GGA[#2] LYP correlation functional: Lee-Yang-Parr (LYP) correlation functional was 

constructed based on an approximation of the Hartree-Fock pair density. 

 

GGA[#3] PW91 exchange-correlation functional: Perdew-Wang 91 exchange-

correlation functional is based on a model of the exchange hole (Eq. (2.14)) and the 

coupling-constant-averaged correlation hole (Eq. (2.29)). 

 

GGA[#4] PBE exchange-correlation functional: Perdew-Burke-Ernzerhof exchange-

correlation functional is a simplified PW91. 

 

Meta GGA: Meta GGA is based on the description of the functional using the second 

derivative of the density and the newly introduced quantity 𝜏(𝒓) defined by Eq. (3.14). 

  

𝐸xc
mGGA = ∫ 𝑓(𝑛(𝒓), ∇𝑛(𝒓), ∇2𝑛(𝒓), 𝜏(𝒓))𝑑𝒓                            (3.13) 

𝜏(𝒓) =
1

2
∑|∇𝜙𝑖(𝒓)|2

𝑁

𝑖

                                                            (3.14) 

𝜏(𝒓) is constructed by the square of the KS gradient. This quantity is distinct from the local 

functional of electron density and its derivatives. The ground-state energy can then be given 

formally as 

𝐸0 = min
Φ

⟨Φ|𝑇̂ + 𝑉̂ne|Φ⟩ + 𝐸H[𝑛Φ] + 𝐸xc[𝑛Φ, 𝜏Φ]. 

Therefore, it is a slight extension of the original KS-DFT formalism. Meta GGA is generally 

superior to GGA but requires dedicated basis functions or finer real-space mesh. 

 

Hybrid DFT: Becke proposed to mix the nonlocal exchange energy, or the Hartree-Fock 

exchange energy, 

𝐸x
HF = −

1

2
∑ ∑ ∬

𝜙𝑖𝜎
∗ (𝒓1)𝜙𝑗𝜎(𝒓𝟏)𝜙𝑗𝜎

∗ (𝒓2)𝜙𝑖𝜎(𝒓2)

|𝒓1 − 𝒓2|

𝑁𝜎

𝑖𝑗𝜎

𝑑𝒓1𝑑𝒓2,                               (3.18) 

with the existing forms for the exchange and correlation, such as 
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𝐸xc
3H = 𝑎𝐸x

HF + 𝑏𝐸x
GGA + (1 − 𝑎 − 𝑏)𝐸x

LDA + 𝑐𝐸c
GGA + (1 − 𝑐)𝐸c

LDA.                      (3.17) 

The most famous parameterization is known as B3LYP, which was constructed by using the 

B88 exchange for the GGA exchange and the LYP correlation for the GGA correlation. 

Another form is 

𝐸xc
1H = 𝑎𝐸x

𝐻𝐹 + (1 − 𝑎)𝐸x
DFA + 𝐸c

DFA,                                                 (3.19) 

where DFA stands for any semilocal density functional approximation (DFA). The most 

famous one is called PBE0 where the fitting parameter was set to be 0.25. Hybrid DFT is 

rather free from the self-interaction error. The mixing parameters, 𝑎 to 𝑐, are determined 

by comparing with the experimental data for selected matters: Because of its highly empirical 

nature, the range of applicability should be limited. It is also noted that hybrid DFT generally 

works for insulators but sometimes fails for metals. 

 

Double hybrid DFT: Grimme constructed 

𝐸xc
2DH = 𝑎x𝐸x

𝐻𝐹 + (1 − 𝑎x)𝐸x
DFA + (1 − 𝑎c)𝐸c

DFA + 𝑎c𝐸c
MP2,                                  (3.22) 

where MP2 stands for the second order approximation to the correlation energy 

𝐸c
MP2 = −

1

4
∑ ∑

|⟨𝜓𝑖𝜓𝑗|𝜓𝑎𝜓𝑏⟩ − ⟨𝜓𝑖𝜓𝑗|𝜓𝑏𝜓𝑎⟩|
2

𝜀𝑎 + 𝜀𝑏 − 𝜀𝑖 − 𝜀𝑗
,                                       (3.23)

2𝑀

𝑎𝑏=𝑁+1

𝑁

𝑖𝑗=1

 

where the bracket appearing in the numerator indicates the Coulomb integral 

⟨𝜓𝑖𝜓𝑗|𝜓𝑎𝜓𝑏⟩ = ∬
𝜓𝑖

∗(𝒓1)𝜓𝑗
∗(𝒓𝟐)𝜓𝑎(𝒓1)𝜓𝑏(𝒓𝟐)

|𝒓1 − 𝒓𝟐|
𝑑𝒙1𝑑𝒙2.                                                     (3.24) 

Note that 𝑎 and 𝑏 is large than 𝑁 indicating that unoccupied KS orbitals are included in 

the formalism contrary to others introduced so far, where only occupied orbitals are included. 

This way, the computation of the functional are becoming more and more demanding 

although the accuracy is generally improving by that. 

 

Range-separated hybrid DFT: Iikura, Tsuneda, Yanai, and Hirao proposed a long-range 

correction (LC) scheme to assign different forms for the exchange depending on the distance 

between the electrons as 

𝐸xc
LC = 𝐸x

long range,HF
+ 𝐸x

short range,DFA
+ 𝐸c

DFA. 

The range-separation is done using the error function as 

𝐸x
long range,HF

= −
1

2
∑ ∑ ∬

𝜙𝑖𝜎
∗ (𝒓1)𝜙𝑗𝜎(𝒓𝟏)erf (𝜇|𝒓1 − 𝒓2|)𝜙𝑗𝜎

∗ (𝒓2)𝜙𝑖𝜎(𝒓2)

|𝒓1 − 𝒓2|

𝑁𝜎

𝑖𝑗𝜎

𝑑𝒓1𝑑𝒓2,     (3.27) 

This is based on the idea that the error of the semilocal approximation to the exchange is 

serious when two electrons are apart and the error is effectively corrected by the HF exchange. 
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The cutoff distance for the range-separation needs to be introduced empirically. 

 

Exact exchange (HF exchange) 

   In this scheme, the one-electron orbitals 𝜙𝑖𝜎 appearing in Eq. (3.18) is not treated as an 

independent variable but is regarded as a functional of the electron density 𝑛(𝒓). That is, the 

orbitals are treated as the solution of a KS equation where a (semi-)local form is used for the 

exchange-correlation functional. The exchange potential thereby generated is the derivative 

of Eq. (3.18), 

𝛿𝐸x

𝛿𝑣s(𝒓)
= ∫

𝛿𝐸x

𝛿𝑛(𝒓′)

𝛿𝑛(𝒓′)

𝛿𝑣𝑠(𝒓)
𝑑𝒓′.                                                    (4.2) 

The derivative of the electron density can be obtained by using the definition of the response 

function 

χ0(𝒓′, 𝒓) =
𝛿𝑛(𝒓′)

𝛿𝑣𝑠(𝒓)
 

as 

∫ 𝑣x(𝒓′)𝜒0(𝒓′, 𝒓)𝑑𝒓′ =
𝛿𝐸x

𝛿𝑣s(𝐫)
.                                                  (4.3) 

That is, using the response function, change in the electron density with respect to the 

effective potential is expressed using the KS orbital as 

χ0(𝒓′, 𝒓) = − ∑ ∑ ∑ ∬
𝜙𝑖𝜎

∗ (𝒓′)𝜙𝑎𝜎(𝒓)𝜙𝑎𝜎
∗ (𝒓)𝜙𝑖𝜎(𝒓′)

𝜀𝑎𝜎 − 𝜀𝑖𝜎

𝑀

𝑎=𝑁𝜎+1

𝑁𝜎

𝑖=1𝜎

𝑑𝒓1𝑑𝒓2 + c. c.        (4.5) 

When this is used, we can derive the exchange potential using the two-electron integral as 

𝛿𝐸x

𝛿𝑣s(𝒓)
= ∑ ∑ ∑ (𝜙𝑎𝜎𝜙𝑗𝜎|𝜙𝑗𝜎𝜙𝑖𝜎)

𝜙𝑎𝜎(𝒓)𝜙𝑖𝜎
∗ (𝒓)

𝜀𝑎𝜎 − 𝜀𝑖𝜎

𝑀

𝑎=𝑁𝜎+1

𝑁𝜎

𝑖𝑗=1𝜎

+ c. c.        (4.6) 

This method for expressing the HF exchange is called optimized effective potential (OEP) 

method. 

 

Second-order Görling-Levy perturbation theory 

The Hamiltonian appearing in the adiabatic connection, 𝐻̂𝜆 = 𝑇̂ + 𝜆𝑊̂ee + V̂𝜆 , is 

decomposed using V̂𝜆 = 𝑉̂s − 𝜆𝑉̂Hx − 𝑉̂c
𝜆 as 

𝐻̂𝜆 = (𝑇̂ + 𝑉̂s) + 𝜆(𝑊̂ee − 𝑉̂Hx) − 𝑉̂c
𝜆, 

following the second order expansion of 𝑉̂c
𝜆 with respect to 𝜆, which starts from the second 

order as 𝑉̂c
𝜆 = 𝜆2𝑉̂c

(2)
. Then the perturbation theory is applied to the KS state Φ𝑛=0 as 
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|Ψ(1)⟩ = − ∑ |Φ𝑛⟩
⟨Φ𝑛|𝑊̂ee − 𝑉̂Hx|Φ𝑛⟩

ℇ𝑛 − ℇ0
𝑛≠0

, 

and this expression is inserted into Eq. (2.23) 

𝐸c
𝜆 = ⟨Ψλ|𝑇̂ + 𝜆𝑊̂ee|Ψλ⟩ − ⟨Φ|𝑇̂ + 𝜆𝑊̂ee|Φ⟩ 

to obtain the correlation energy by expanding it in powers of 𝜆. The result is 

𝐸c
(2)

= ⟨Φ|𝑊̂ee|Ψ(1)⟩ = ⟨Φ|𝑊̂ee − 𝑉̂Hx|Ψ(1)⟩ = − ∑ |
|⟨Φ|𝑊̂ee − 𝑉̂Hx|Φ𝑛⟩|

2

ℇ𝑛 − ℇ0
𝑛≠0

. 

   It was found this does not improve the correlation satisfactorily, indicating that it is 

necessary to go beyond the second order approximation. 

 

There are so many types of approximation. As we have seen above, some of them are 

introduced to approximate the HF exchange, which takes large computational time, with semi 

local one, for which the computational time is generally much smaller. Others are introduced 

to better describe the correlation functionals semilocally. In many cases, the accuracy has been 

improved empirically in the sense that fitting parameters are introduced to better reproduce 

experiments or accurate simulations. This idea is recently combined with machine learning 

methods which enable to use much flexible fitting functions like neural network. Contrary to 

this approach, there have been trials to derive plausible functionals theoretically. 

 

Fluctuation dissipation formula 

To derive the functional form theoretically, I will introduce the general idea of many-body 

theories called fluctuation dissipation formula that relates the correlation described using the 

pair density 𝑛2(𝒓1, 𝒓2) with the fluctuation ⟨Ψ|𝑛̂2(𝒓1, 𝒓2)|Ψ⟩ described by the expectation 

value of the pair density operator. The fluctuation is known to be more easily evaluated than 

the correlation when the fluctuation is described by using the response functions. Note that 

this is a step toward combining the density functional theory with the many-body theory. 

 

Density operator 

To compactly describe the fluctuation dissipation theorem, let us introduce the density 

operator without using the terminology of the field theory. The density operator is 

defined as 

𝑛̂1(𝒓) = ∑ 𝛿(𝒓 − 𝒓𝑖)

𝑁

𝑖

 

where 𝒓𝑖 is the coordinate of the constituent 𝑁 electrons and 𝒓 is a point in real-space. 

The density can be obtained as 

𝑛(𝒓) = ⟨Ψ|𝑛̂1(𝒓)|Ψ⟩. 
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The pair density operator can also be defined as 

𝑛̂2(𝒓1, 𝒓2) = 𝑛̂1(𝒓1)𝑛̂1(𝒓2) − 𝑛̂1(𝒓1)𝛿(𝒓1 − 𝒓2). 

Those are used to obtain 

𝑇 = −
1

2
∫[∇𝒓

2𝑛̂1(𝒓, 𝒓′)]𝒓′=𝒓𝑑𝒓 

𝑉ee =
1

2
∬ 𝑤ee(𝒓1, 𝒓2)𝑛̂2(𝒓1, 𝒓2)𝑑𝒓1𝑑𝒓2 

𝑉ne = ∫ 𝑣ne (𝒓)𝑛̂(𝒓)𝑑𝒓 

 

To obtain the correlation energy using the adiabatic connection, 

𝐸c = ∫ 𝑑𝜆
1

0

⟨Ψλ|𝑊̂ee|Ψλ⟩ − ⟨Φ|𝑊̂ee|Φ⟩ =
1

2
∫ 𝑑𝜆

1

0

∬
𝑛2,c

𝜆 (𝒓1, 𝒓2)

|𝒓1 − 𝒓2|
𝑑𝒓1𝑑𝒓2 ,        (4.15) 

we need the quantity 

𝑛2,c
𝜆 (𝒓1, 𝒓2) = 𝑛2

𝜆(𝒓1, 𝒓2) − 𝑛2,KS(𝒓1, 𝒓2). 

Using the relations 

𝑛2
𝜆(𝒓1, 𝒓2) = ⟨Ψλ|𝑛̂2(𝒓1, 𝒓2)|Ψλ⟩ = ⟨Ψλ|𝑛̂1(𝒓1)𝑛̂1(𝒓2)|Ψλ⟩ −  𝛿(𝒓1 − 𝒓2)⟨Ψλ|𝑛̂1(𝒓1)|Ψλ⟩ 

𝑛2,KS(𝒓1, 𝒓2) = ⟨Φ|𝑛̂1(𝒓1)𝑛̂1(𝒓2)|Φ⟩ −  𝛿(𝒓1 − 𝒓2)⟨Φ|𝑛̂1(𝒓1)|Φ⟩        (4.16 − 4.17) 

and the fact that the density is independent of 𝜆 (by definition), we have 

𝑛2,c
𝜆 (𝒓1, 𝒓2) = ⟨Ψλ|𝑛̂1(𝒓1)𝑛̂1(𝒓2)|Ψλ⟩ − ⟨Φ|𝑛̂1(𝒓1)𝑛̂1(𝒓2)|Φ⟩.                         (4.18) 

 

Now we relate the correlation function to the response function, i.e. response of the density 

to the external perturbation. Equation (4.5) is a static response function  

χ0(𝒓′, 𝒓) =
𝛿𝑛(𝒓′)

𝛿𝑣𝑠(𝒓)
 

but it is more convenient to use a time-dependent one like 

χ0(𝒓′𝑡′, 𝒓𝑡) =
𝛿𝑛(𝒓′𝑡′)

𝛿𝑣𝑠(𝒓𝑡)
 

and to consider the static limit. We need to remind that eq. (4.5) describes a response of the 

non-interacting system. What we need is the response of the interacting systems 

𝜒(𝒓′𝑡′, 𝒓𝑡) =
𝛿𝑛(𝒓′𝑡′)

𝛿𝑣ne(𝒓𝑡)
. 

We must relate 𝜒 with χ0. For this purpose, we use a many-body Green’s function formalism 

for the time-dependent Schrödinger equation: Afterwards we will return to the time-

dependent DFT formalism. So, let us introduce the many-body Green’s function formalism 

for a while and then return to the discussion on the fluctuation dissipation theorem. 
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Many-body Green’s function (article 2 of the references shown above) 

   We briefly introduce the many-body Green’s function following another article written by 

Toulouse. For this purpose, we first change the language to that of the field theory. The 

Hamiltonian can be rewritten as 

𝐻̂ = ∫ 𝑑𝒙 𝜓̂†(𝒙) (−
1

2
∇2 + 𝑣ne(𝒓)) 𝜓̂(𝑥) +

1

2
∬ 𝑑𝒙1𝑑𝒙2 𝜓̂†(𝒙1)𝜓̂†(𝒙2)𝑣(𝒓1, 𝒓2)𝜓̂(𝒙2)𝜓̂(𝒙1), 

where 𝑣(𝒓1, 𝒓2) is the Coulombic interaction 1/|𝒓1 − 𝒓2| and the term parenthesized in the 

first term −
1

2
∇2 + 𝑣ne(𝒓) will be denoted as ℎ(𝒓). Here we have introduced the field operator 

𝜓̂(𝒙) ≡ ∑ 𝜓𝑖(𝒙)𝑐̂𝑖

i

, 

which will be time-evolved using the Heisenberg representation as 

𝜓̂(1) ≡ 𝜓̂(𝒙1, 𝑡1) = 𝑒𝑖𝐻̂𝑡1𝜓(𝒙1)𝑒−𝑖𝐻̂𝑡1 . 

This is just a rewrite of equations but will help to make equations much simpler. I intuitively 

note that the “physical” Green’s function is the retarded one but “convenient” Green’s 

function is the time-ordered one; there is a way to make the former from the latter. The time-

ordered Green’s function is given for an 𝑁 electron system by 

                                     i𝐺(1,2) = ⟨𝑁|𝑇[𝜓̂(1)𝜓̂†(2)]|𝑁⟩ 

= {
⟨𝑁|𝜓̂(1)𝜓̂†(2)|𝑁⟩     when  t1 > 𝑡2

−⟨𝑁|𝜓̂†(2)𝜓̂(1)|𝑁⟩   when  t1 < 𝑡2

                                                    (2) 

Here operators are ordered from the more past ones to the more recent ones. The Green’s 

function follows the equation of motion 

(i
𝜕

𝜕𝑡
+

∇2

2
) 𝐺(1,2) = 𝛿(1 − 2) − 𝑖 ∑ 𝑣(3,1)

𝜎3

⟨𝑁|𝑇[𝜓̂†(3)𝜓̂(3)𝜓̂(1)𝜓̂†(2)]|𝑁⟩. 

This can be derived as follows: 

First, consider the equation of motion of the field operator, which is 

𝜕𝜓̂(1)

𝜕𝑡1
= −i𝑒i𝐻̂𝑡1[𝜓̂(𝒙1), 𝐻̂]𝑒−i𝐻̂𝑡1 . 

By calculating the commutation relation, we get 

[𝜓̂(𝒙1), 𝐻̂] = ℎ(𝒓1)𝜓̂(𝒙1) + ∫ 𝑑𝒙2 𝜓̂†(𝒙2)𝑣(𝒓1, 𝒓2)𝜓̂(𝒙2)𝜓(𝒙1) 

and then 

𝜕𝜓̂(1)

𝜕𝑡1
= −iℎ(1)𝜓̂(1) − 𝑖 ∫ 𝑑3𝜓̂(3)𝑣(1,3)𝜓̂(3)𝜓̂(1). 

This can be used to take the time derivative of the one-body Green’s function as 
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i
𝜕

𝜕𝑡1
𝐺(1,2) = 𝛿(𝑡1 − 𝑡2)⟨𝑁|𝜓̂(1)𝜓̂†(2)|𝑁⟩ + 𝜃(𝑡1 − 𝑡2) ⟨𝑁|

𝜕𝜓̂(1)
𝜕𝑡1

𝜓̂†(2)|𝑁⟩

− 𝛿(𝑡1 − 𝑡2)⟨𝑁|𝜓̂†(2)𝜓̂(1)|𝑁⟩ − 𝜃(𝑡1 − 𝑡2) ⟨𝑁|𝜓̂†(2)
𝜕𝜓̂(1)

𝜕𝑡1
|𝑁⟩ 

This can be simplified as 

i
𝜕

𝜕𝑡1
𝐺(1,2) = 𝛿(1,2) + ℎ(1)𝐺(1,2)

− 𝑖 ∫ 𝑑3 𝑣(1,3)[𝜃(𝑡1 − 𝑡2)⟨𝑁|𝜓̂†(3)𝜓̂(3)𝜓̂(1)𝜓̂†(2)|𝑁⟩ − 𝜃(𝑡2

− 𝑡1) ⟨𝑁|𝜓̂†(2)𝜓̂†(3)𝜓̂(3)𝜓̂(1)|𝑁⟩ 

Using the definition of the two-body Green’s function as will appear below 

i2𝐺2(1,2; 1′, 2′) = ⟨𝑁|𝑇[𝜓̂(1)𝜓̂(2)𝜓̂†(1′)𝜓̂†(2′)]|𝑁⟩, 

further simplification is possible and the result is 

i
𝜕

𝜕𝑡1
𝐺(1,2) = 𝛿(1,2) + ℎ(1)𝐺(1,2) + i ∫ 𝑑3𝑣(1,3)𝐺2(1,3+; 2,3++), 

where time is ordered as 𝑡3
++ > 𝑡3

+ > 𝑡3 and the difference in the time is infinitesimal. 

 

   The one-body density matrix can be written as 

𝑛1(𝒙1, 𝒙2) = ⟨𝑁|𝜓̂†(𝒙2)𝜓̂(𝒙1)|𝑁⟩ = −i𝐺(𝒙1𝑡1, 𝒙2𝑡1
+).                 (3) 

and the one-body electron density as 

𝑛1(𝒓1, 𝒓2) = −i ∑ 𝐺(𝒓1𝜎𝑡1, 𝒓2𝜎𝑡1
+)

σ

.                                                 (4) 

The Green’s function can be rewritten using the completeness relation of 𝑁 ± 1 body states 

as 

i𝐺(𝒙1, 𝒙2, 𝜏) = 𝜃(𝜏) ∑⟨𝑁|𝜓̂(𝒙1)|𝑁 + 1, 𝑎⟩⟨𝑁 + 1, 𝑎|𝜓̂†(𝒙2)|𝑁⟩𝑒−i(𝐸𝑁+1,𝑎−𝐸𝑁)𝜏

𝑎

− 𝜃(−𝜏) ∑⟨𝑁|𝜓̂†(𝒙2)|𝑁 − 1, 𝑎⟩⟨𝑁 − 1, 𝑎|𝜓̂(𝒙1)|𝑁⟩𝑒−i(𝐸𝑁−𝐸𝑁−1,𝑎)𝜏

𝑎

,    (5) 

so that the Fourier component is 

𝐺(𝒙1, 𝒙2, 𝜔) = ∑
⟨𝑁|𝜓̂(𝒙1)|𝑁 + 1, 𝑎⟩⟨𝑁 + 1, 𝑎|𝜓̂†(𝒙2)|𝑁⟩

𝜔 − 𝐸𝑁+1,𝑎 + 𝐸𝑁 + 𝑖0+ 
𝑎

+ ∑
⟨𝑁|𝜓̂†(𝒙2)|𝑁 − 1, 𝑎⟩⟨𝑁 − 1, 𝑎|𝜓̂(𝒙1)|𝑁⟩

𝜔 − 𝐸𝑁−1,𝑎 + 𝐸𝑁 − 𝑖0+ 
𝑎

.  

This is called the Lehman representation of the one-particle Green’s function. It is simply 

rewritten as 
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= ∑
𝑓𝑎(𝒙1)𝑓𝑎

∗(𝒙2)

𝜔 + 𝐴𝑎 + 𝑖0+ 
𝑎

+ ∑
𝑓𝑖(𝒙1)𝑓𝑖

∗(𝒙2)

𝜔 − 𝐼𝑖 − 𝑖0+ 
𝑖

,                                               (6) 

where the affinity and ionization potential has been used. The function 𝑓 appearing in the 

denominator is called as the (quasi particle) wave function. 

 

Linear response and response function 

   At this moment, let us definite the linear-response function. For this, we will consider 

a system applied with a perturbation like 

𝐻̂′(t) = ∫ 𝑛̂(𝒓)𝑉ext(𝒓, 𝑡)𝑑𝒓 

and evaluate the expectation value of the density. We can use the equation of motion for 

the time-evolution operator in the interaction representation 

i
∂𝑈𝐼(𝑡, 𝑡0)

𝜕𝑡
= 𝐻̂′𝐼(𝑡)𝑈𝐼(𝑡, 𝑡0) 

which is solved as 

𝑈𝐼(𝑡, 𝑡0) ≃ 1 − i ∫ 𝑑𝑡′
t

t0

𝐻̂′𝐼(𝑡′) = 1 − i ∫ 𝑑𝑡′
t

t0

𝑒i𝐻̂0𝑡′
𝐻̂(𝑡′)𝑒−i𝐻̂0𝑡′. 

Therefore, the expectation value of the density is given as 

𝛿𝑛(𝒓𝑡) = 〈𝑈𝐼
†(𝑡, 𝑡0)𝑛̂𝐼(𝒓𝑡)𝑈𝐼(𝑡, 𝑡0)〉. 

The terms linear with respect to the perturbation is 

𝛿𝑛(𝒓𝑡) = 𝑖 ∫ 𝑑𝑡′ ∫ 𝑑𝒓′
𝑡

𝑡0

〈[𝑛̂𝐼(𝒓𝑡), 𝑛̂𝐼(𝒓′𝑡′)]〉𝑉ext(𝒓′, 𝑡′) 

The response function is thus given by the density-density correlation function as  

𝜒(𝒓𝑡, 𝒓′𝑡′) = i〈[𝑛̂𝐼(𝒓𝑡), 𝑛̂𝐼(𝒓′𝑡′)]〉. 

Here the subscript 𝐼 may be regarded as the Heisenberg representation. Depending on 

the boundary condition, we can make the causal or time-ordered response function. Note 

that this is a plausible extension of the static definition 𝑛̂2(𝒓1, 𝒓2) = 𝑛̂1(𝒓1)𝑛̂1(𝒓2) −

𝑛̂1(𝒓1)𝛿(𝒓1 − 𝒓2) 

 

One can likewise introduce the two-body Green’s function as 

i2𝐺2(1,2; 1′, 2′) = ⟨𝑁|𝑇[𝜓̂(1)𝜓̂(2)𝜓̂†(1′)𝜓̂†(2′)]|𝑁⟩,                                        (7) 

which describes the propagation of a pair of particles; electrons, holes, or electron-hole. A 

related quantity called four-point linear response function is defined as 

i𝜒(1,2; 1′, 2′) = i2𝐺2(1,2; 1′, 2′) − 𝑖𝐺(1,1′)𝑖𝐺(2,2′).                                      (8) 

For a special time-ordering relation, it can be rewritten as 
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i𝜒(1,2; 𝒙′1𝑡1
+, 𝒙′2𝑡2

+)

= ⟨𝑁|𝑇[𝜓̂†(1′)𝜓̂(1)𝜓̂†(2′)𝜓̂(2)]|𝑁⟩

− ⟨𝑁|𝜓̂†(1′)𝜓̂(1)|𝑁⟩⟨𝑁|𝜓̂†(2′)𝜓̂(2)|𝑁⟩,         (9) 

and the Fourie transformed equation is then given by 

𝜒(𝒙1, 𝒙2; 𝒙1
′ , 𝒙2

′ ; 𝜔)

= ∑ [
⟨𝑁|𝜓̂†(1′)𝜓̂(1)|𝑁, 𝑛⟩⟨𝑁, 𝑛|𝜓̂†(2′)𝜓̂(2)|𝑁⟩

𝜔 − (𝐸𝑁,𝑛 − 𝐸𝑁) + 𝑖0+
𝑛≠0

−
⟨𝑁|𝜓̂†(2′)𝜓̂(2)|𝑁, 𝑛⟩⟨𝑁, 𝑛|𝜓̂†(1′)𝜓̂(1)|𝑁⟩

𝜔 + (𝐸𝑁,𝑛 − 𝐸𝑁) − 𝑖0+
]             (11) 

This indicates that the four-point linear response function in this special time-ordering 

corresponds to the linear-response of particle-hole pairs. 

   One can further introduce the independent-particle four-point linear-response function 

𝜒IP(1,2; 1′, 2′) = −𝑖𝐺(1,1′)𝐺(2,2′)                                                   (12) 

and the corresponding response function 

𝜒IP(𝒙1, 𝒙2; 𝒙1
′ , 𝒙2

′ ; 𝜏) = −𝑖𝐺(𝒙1, 𝒙2
′ ; 𝜏)𝐺(𝒙2, 𝒙1

′ ; −𝜏)                           (13) 

  

𝜒IP(𝒙1, 𝒙2; 𝒙1
′ , 𝒙2

′ ; 𝜔) = ∑ [
𝑓𝑖

∗(𝒙1
′ )𝑓𝑎(𝒙1)𝑓𝑎

∗(𝒙2
′ )𝑓𝑖(𝒙2)

𝜔 − (ℇ𝑎 − ℇ𝑖) + 𝑖0+
−

𝑓𝑖
∗(𝒙2

′ )𝑓𝑎(𝒙2)𝑓𝑎
∗(𝒙1

′ )𝑓𝑖(𝒙1)

𝜔 + (ℇ𝑎 − ℇ𝑖) − 𝑖0+
]

𝑖≤𝑁<𝑎

.  (14) 

 

Having introduced the many-body Green’s function, let us return to the discussion on the 

fluctuation dissipation theorem. The response function (Eqs. (9-10)) can be written as 

iχλ(𝒓1𝑡1, 𝒓2𝑡2) = ⟨Ψ𝜆|𝑇[𝑛̂𝜆(𝒓1𝑡1)𝑛̂𝜆(𝒓2𝑡2)]|Ψ𝜆⟩ − ⟨Ψ𝜆|𝑇[𝑛̂𝜆(𝒓1𝑡1)]|Ψ𝜆⟩⟨Ψ𝜆|𝑇[𝑛̂𝜆(𝒓2𝑡2)]|Ψ𝜆⟩  

= ⟨Ψ𝜆|𝑇[𝑛̂𝜆(𝒓1𝑡1)𝑛̂𝜆(𝒓2𝑡2)]|Ψ𝜆⟩ − ⟨Ψ𝜆|𝑛̂(𝒓1)|Ψ𝜆⟩⟨Ψ𝜆|𝑛̂(𝒓2)|Ψ𝜆⟩             (4.19) 

If we set 𝑡2 = 𝑡1 + 0+, the Heisenberg phase factor is canceled out and 

iχλ(𝒓1, 𝒓2; 𝜏 = 0−) = ⟨Ψ𝜆|𝑛̂(𝒓1)𝑛̂(𝒓2)|Ψ𝜆⟩ − ⟨Ψ𝜆|𝑛̂(𝒓1)|Ψ𝜆⟩⟨Ψ𝜆|𝑛̂(𝒓2)|Ψ𝜆⟩.              (4.20) 

It is possible to derive similar equation for λ = 0, giving 

iχ0(𝒓1, 𝒓2; 𝜏 = 0−) = ⟨Φ|𝑛̂(𝒓1)𝑛̂(𝒓2)|Φ⟩ − ⟨Φ|𝑛̂(𝒓1)|Φ⟩⟨Φ|𝑛̂(𝒓2)|Φ⟩.              (4.21) 

This makes it possible to write the two-body density correlation in terms of the response 

function as 

𝑛2,c
𝜆 (𝒓1, 𝒓2) = i[𝜒𝜆(𝒓1, 𝒓2; 𝜏 = 0−) − 𝜒0(𝒓1, 𝒓2; 𝜏 = 0−)],                            (4.22) 

and using the Fourier transformed form as 

𝑛2,c
𝜆 (𝒓1, 𝒓2) = − ∫

𝑑𝜔

2𝜋i

∞

−∞

𝑒𝑖𝜔0+
[𝜒𝜆(𝒓1, 𝒓2; 𝜔) − 𝜒0(𝒓1, 𝒓2; 𝜔)],                            (4.23) 

which is known as the fluctuation dissipation theorem. When this is combined with the 

adiabatic connection formula, we get 
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𝐸c = −
1

2
∫ 𝑑𝜆

1

0

∫
𝑑𝜔

2𝜋i

∞

−∞

𝑒𝑖𝜔0+
∬

𝜒𝜆(𝒓1, 𝒓2; 𝜔) − 𝜒0(𝒓1, 𝒓2; 𝜔)

|𝒓1 − 𝒓2|
𝑑𝒓1𝑑𝒓2 

This is a particularly important formula which provides a practical way to compute the 

correlation functional without the many-body wave function. 

   The problem is now reduced to the evaluation of the response function 𝜒𝜆. This can be 

done either by using the time-dependent DFT or the many-body perturbation within the GW 

approximation. For the moment, let us concentrate the former. 

 

Time-dependent density functional theory (TD-DFT) 

To explain the response function within DFT, I will briefly introduce TDDFT. According 

to Runge and Gross, there exists a one-to-one correspondence between the time-dependent 

density 𝑛(𝒓, 𝑡) and the time-dependent effective potential 𝑣s(𝒓, 𝑡), so that 𝑛(𝒓, 𝑡) can be 

obtained by solving the time-dependent Kohn-Sham equation: 

𝑖
𝜕

𝜕𝑡
𝜑𝑖(𝒓, 𝑡) = [−

1

2
∇2 + 𝑣s(𝒓, 𝑡)] 𝜑𝑖(𝒓, 𝑡), 

and 

𝑛(𝒓, 𝑡) = ∑|𝜑𝑖(𝒓, 𝑡)|2

𝑁

𝑖

 

This is a natural extension of the Kohn-Sham DFT. 

   According to the many-body theory, in the linear response regime, the change in the 

density and change in the external potential can be related via the response function as 

𝛿𝑛𝜆(𝒓, 𝑡) = ∫ 𝑑𝑡′

∞

0

∫ 𝑑𝒓′ 𝜒𝜆(𝒓𝑡, 𝒓′𝑡′)𝛿𝑣ext
𝜆 (𝒓′𝑡′) 

where 

𝜒𝜆(𝒓𝑡, 𝒓′𝑡′) =
𝛿𝑛(𝒓𝑡)

𝛿𝑣ext
𝜆 (𝒓′𝑡′)

 

the response function can be given (from the definition) as 

𝜒𝜆(𝒓, 𝒓′, 𝜔) = ∑ [
⟨Ψ𝜆|𝑛̂(𝒓)|Ψ𝑚

𝜆 ⟩⟨Ψ𝑚
𝜆 |𝑛̂(𝒓′)|Ψ𝜆⟩

𝜔 − 𝜔𝑚 + 𝑖0+
−

⟨Ψ𝜆|𝑛̂(𝒓′)|Ψ𝑚
𝜆 ⟩⟨Ψ𝑚

𝜆 |𝑛̂(𝒓)|Ψ𝜆⟩

𝜔 + 𝜔𝑚 + 𝑖0+
]

𝑚≠0

. 

In TDDFT, the equations are replaced by those of a noninteracting system 

δ𝑛(𝒓, 𝑡) = ∫ 𝑑𝑡′

∞

0

∫ 𝑑𝑟′ 𝜒𝜆,KS(𝒓𝑡, 𝒓′𝑡′)𝛿𝑣s
𝜆(𝒓′𝑡′), 
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𝜒𝜆,KS(𝒓𝑡, 𝒓′𝑡′) =
δ𝑛(𝒓𝑡)

δ𝑣s
𝜆(𝒓′𝑡′)

, 

and 

𝜒𝜆,KS(𝒓, 𝒓′, 𝜔) = ∑
𝜑𝑘

𝜆∗(𝒓)𝜑𝑗
𝜆(𝒓)𝜑𝑗

𝜆∗(𝒓′)𝜑𝑘
𝜆(𝒓′)

𝜔 − 𝜔𝑗𝑘 + 𝑖𝜂
𝑘𝑗

 

The effective potential, 𝑣s
𝜆(𝒓′𝑡′) = 𝑣ext

𝜆 (𝒓′𝑡′) + 𝑣H(𝒓′𝑡) + 𝑣xc
𝜆 (𝒓′𝑡′), is related to the density 

via the exchange-correlation kernel 𝐾 as 

𝐾xc
𝜆 (𝒓𝑡, 𝒓′𝑡′) =

𝛿𝑣xc
𝜆 (𝒓𝑡)

𝛿𝑛(𝒓′𝑡′)
, 

so that 

δ𝑣s
𝜆(𝒓𝑡) = 𝛿𝑣ext

𝜆 (𝒓𝑡) + ∫ d𝐫′
𝛿𝑛(𝒓’𝑡)

|𝐫 − 𝐫′|
+ ∫ 𝑑𝒓′𝑑𝑡′Kxc

𝜆 (𝒓𝑡, 𝐫′t′)𝛿𝑛(𝒓′𝑡′) 

Since the same density response results in both cases, we get 

𝜒𝜆(𝒓𝑡, 𝒓′𝑡′) = 𝜒λ,KS(𝒓𝑡, 𝒓′𝑡′) + ∭ 𝜒𝜆,KS(𝒓𝑡, 𝒓1𝑡1) [
𝛿(𝑡1 − 𝑡2)

|𝒓1 − 𝒓2|
+ 𝐾xc

𝜆 (𝒓1𝑡1, 𝒓2𝑡2)] 𝜒𝜆 (𝒓2𝑡2, 𝒓′𝑡′) 

Namely, once functional form for the exchange-correlation kernel is determined, we get the 

response function, with which one can calculate the correlation functional. The problem has 

not been solved by this, instead, the problem has been transferred to the construction of 𝐾xc
𝜆 , 

which is practically easier. Also, there is a way to construct it from a rigorous many-body 

theory. 

 

Let us then introduce the many-body theory for constructing the response function. Again, 

we will follow the article written by Toulouse. 

 

Self-energy 

Returning to the equation of motion, which was derived above as  

i
𝜕

𝜕𝑡1
𝐺(1,2) = 𝛿(1,2) + ℎ(1)𝐺(1,2) + i ∫ 𝑑3𝑣(1,3)𝐺2(1,3+; 2,3++),          (15) 

let us introduce the self-energy operator. For this purpose, let us assume that we can find a 

solution for the following equation 

∫ 𝑑3ΣHxc(1,3)𝐺(3,2) = −𝑖 ∫ 𝑑3𝑣(1,3)𝐺2(1,3+; 2,3++)                       (17) 

or equivalently let us introduce the following quantity 

ΣHxc(1,4) = −𝑖 ∫ 𝑑3𝑣(1,3)𝐺2(1,3+; 2,3++)𝐺−1(2,4).                            (18) 

Then, we obtain a formally closed form for the Green’s function 
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[𝑖
𝜕

𝜕𝑡1
− ℎ(1)] 𝐺(1,2) = 𝛿(1,2) + ∫ 𝑑3ΣHxc(1,3)𝐺(3,2).                               (16) 

This means that with the self-energy (Eq.(18)) we do not have to introduce the complicated 

multi-body Green’s function. 

   Note that Green’s function is given for independent electron approximation as 

[𝑖
𝜕

𝜕𝑡1
− ℎ(1)] 𝐺indep(1,2) = 𝛿(1,2)                                                            (19) 

Using 𝐺(1,2) = ∫ 𝐺indep(1,4)𝐺indep
−1 (4,3)𝐺(3,2), we get 

∫ 𝑑3[𝐺indep
−1 (1,3) − ΣHxc(1,3)]G(3,2) = 𝛿(1,2)                                      (20) 

This is rewritten as 

𝐺(1,2) = 𝐺indep(1,2) + ∬ 𝐺indep(1,3) ΣHxc(3,4)𝐺(4,2),                       (21) 

or as 

𝐺−1(1,2) = 𝐺indep
−1 (1,2) − ΣHxc(3,4).                                                           (22) 

Equation (21) is known as the Dyson equation for the one-body Green’s function. 

   Fourie transform is (assuming homogeneity of the system with respect to time) given as 

[𝜔 − ℎ(𝒓1)]𝐺(𝒙1, 𝒙𝟐; 𝜔) = 𝛿(𝒙1, 𝒙2) + ∫ 𝑑𝒙3ΣHxc(𝒙1, 𝒙3; 𝜔)𝐺(𝒙3, 𝒙2; 𝜔)                (23) 

Using the pole ℇ𝑘 and the wave function 𝑓𝑘(𝒙) of the Green’s function, we can rewrite Eq. 

(23) at the pole as 

[ℇ𝑘 − ℎ(𝒓1)]𝑓𝑘(𝒙1)𝑓𝑘
∗(𝒙2) = ∫ 𝑑𝒙3 ΣHxc(𝒙1, 𝒙3; ℇ𝑘)𝑓𝑘(𝒙3)𝑓𝑘

∗(𝒙2) = 0,          (24) 

when there is no degeneracy. This can be further simplified as 

ℎ(𝒓1)𝑓𝑘(𝒙1) + ∫ 𝑑𝒙3 ΣHxc(𝒙1, 𝒙3; ℇ𝑘)𝑓𝑘(𝒙3) = ℇ𝑘𝑓𝑘(𝒙1).                                   (25) 

If the imaginary part of the self-energy is zero, Eq. (25) is equivalent to a one-particle 

Schrödinger equation. Because of the imaginary part, however, it becomes similar to the 

equation with absorption potential, indicating decreasing amplitude of the wave function with 

time. It is known in some cases that the imaginary part is small for the energy states close to 

the Fermi level. So, Eq.(25) is called quasiparticle equation. 

   Note that the self-energy is apparently equivalent to the exchange-correlation potential of 

TD-DFT. It is therefore possible, in principle, to derive the exchange-correlation from the 

many-body theory although it is determined from empirical argument. 

 

Exchange-correlation kernel from first principles 
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1. Green’s function using the interaction representation 

Suppose the system is perturbed by an external field 𝑢(𝒓), or 

𝐻′(𝑡1) = ∫ 𝑑1 𝑢(1)𝑛(1). 

The Green’s function can be described using the interaction representation 

𝐺(1,1′) = −i
⟨𝑁|𝑇[𝑆𝜓̂(1)𝜓̂†(1′)]|𝑁⟩

⟨𝑁|𝑇[𝑆]|𝑁⟩
, 

where 𝑆 is the time-evolution operator in the interaction representation 

𝑆(𝑡𝑎, 𝑡𝑏) = exp [−i ∫ 𝑑𝑡1𝐻′
𝐼(1)

𝑡𝑎

𝑡𝑏

] ;     S = S(−∞, ∞). 

The two-body Green’s function is also 

𝐺2(1,1′; 2,2′) = (−i)2
⟨𝑁|𝑇[𝑆𝜓̂(1)𝜓̂(2)𝜓̂†(2′)𝜓̂†(1′)]|𝑁⟩

⟨𝑁|𝑇[𝑆]|𝑁⟩
, 

similarly to the one in the limit of 𝑢 → 0.  

2. Equation of motion 

   The Green’s function follows an equation of motion 

[i
𝜕

𝜕𝑡1
− ℎ(1) − 𝑢(1)] 𝐺(1,1′) + 𝑖 ∫ 𝑑2𝑣(1,2)𝐺2(1,1′, 2+, 2++) = 𝛿(1,1′). 

When the Green’s function is differentiated with respect to 𝑢, we get the equation known as 

Schwinger’s trick 

𝛿𝐺(1,1′)

𝛿𝑢(2)
= −𝐺2(1,1′, 2,2+) + 𝑖𝐺(1,1′)𝐺(2,2+) = −𝐺2(1,1′, 2,2+) + 𝑖𝐺(1,1′)〈𝑛̂(2)〉. 

With this, one can formally remove the two-body Green’s function from the equation of 

motion: 

[i
𝜕

𝜕𝑡1
− ℎ(1) − 𝑢(1) − ∫ 𝑑2𝑣(1,2)〈𝑛̂(2)〉] 𝐺(1,1′) − 𝑖 ∫ 𝑑2𝑣(1+, 2)

𝛿𝐺(1,1′)

𝛿𝑢(2)
= 𝛿(1,1′). 

As we did above, we can define the self-energy operator 

𝛴(1,1′) = ∫ 𝑑2𝑣(1,2)〈𝑛̂(2)〉 𝛿(1,1′) + 𝑖 ∬ 𝑑23  𝑣(1+, 2)
𝛿𝐺(1,3)

𝛿𝑢(2)
𝐺−1(3,1′)

≡ 𝛴H(1,1′) + 𝛴xc(1,1′) 

so that the equation of motion can be rewritten as 

[i
𝜕

𝜕𝑡1
− ℎ(1) − 𝑢(1)] 𝐺(1,1′) − 𝑖 ∫ 𝑑2𝛴(1,2)𝐺(2,1′) = 𝛿(1,1′). 

When unperturbed Green’s function is defined from 
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[i
𝜕

𝜕𝑡1
− ℎ(1)] 𝐺(0)(1,1′) = 𝛿(1,1′), 

we have the equation of Dyson type 

𝐺(1,1′) = 𝐺(0)(1,1′) + ∬ 𝑑23 𝐺(0)(1,2)𝛴(2,3)𝐺(3,1′). 

 

3. Self-energy 

The self-energy operator has a form difficult to understand. Let us relate it physically 

understandable quantities. For this purpose, we define the total potential as a sum of the 

external potential and the Hartree-potential 

𝑉(1) = 𝑢(1) + ∫ 𝑑2𝑣(1,2)〈𝑛̂(2)〉 

and consider the response of the Green’s function to the change in the total potential; 

−
δG−1(1,2)

𝛿𝑉(3)
↦ 𝛤(1,2; 3) 

The vertex function 𝛤(1,2; 3) can be rewritten in a Dyson form as 

Γ(1,2; 3) = 𝛿(1,2)𝛿(2,3) + ∭ 𝑑4567
𝛿Σxc(1,2)

𝛿𝐺(4,5)
G(4,6)G(7,5)Γ(6,7; 3), 

so that one may start the first order approximation from 𝛿(1,2)𝛿(2,3). 

   With the vertex, let us remove the unpleasant δ/δu operator from the definition of the 

self-energy. The exchange-correlation part can be rewritten as 

𝛴xc(1,2) = i ∬ 𝑑3456 𝑣(1+, 3)
𝛿𝑉(4)

𝛿𝑢(3)
𝐺(1,6)𝛤(6,2; 5). 

Using the fact that the change in the total potential induced by the external potential is the 

dielectric function 

ϵ−1(4,3) =
𝛿𝑉(4)

𝛿𝑢(3)
 

and the fact that the dielectric function operated to the Coulomb potential is the screened 

Coulomb 

𝑊(1+, 4) = ∫ 𝑑3  𝑣(1+, 3)ϵ−1(4,3) 

Σxc can be rewritten as 

Σxc(1,2) =  i ∬ 𝑑56 𝑊(1+, 3)𝐺(1,6)Γ(6,2; 5). 

   To remove the δ/δu operator from the screened Coulomb, it is rewritten as 
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𝑊(1+, 2) = 𝑣(1+, 2) + ∫ 𝑑34  𝑣(1+, 4)
𝛿𝐺(4,4+)

𝛿𝑉(5)

𝛿𝑉(5)

𝛿𝑢(3)
𝑣(3,2)

= 𝑣(1+, 2) + ∫ 𝑑34  𝑣(1+, 4)
𝛿𝐺(4,4+)

𝛿𝑉(5)
𝑊(5,2)

= 𝑣(1+, 2) + ∫ 𝑑34  𝑣(1+, 4)
𝛿〈𝜌̂(2)〉

𝛿𝑉(5)
𝑊(5,2) 

and then, the derivative appearing in the last line, which is the polarization, is rewritten using 

the vertex function as 

𝑃(1,2) = i ∫ 𝑑34 𝐺(1,3)
𝛿𝐺−1(3,4)

𝛿𝑉(2)
𝐺(4,1+) = −𝑖 ∫ 𝑑34 𝐺(1,3)𝐺(4,1+)Γ(3,4; 2). 

Then, we can obtain a Dyson equation for the screened Coulomb as 

𝑊(1+, 2) = 𝑣(1+, 2) + ∫ 𝑑34  𝑣(1+, 4)𝑃(2,5)𝑊(5,2). 

4. Hedin’s equation 

Finally, we arrive at a closed set of equations called Hedin’s equation 

𝐺(1,2) = 𝐺0(1,2) + ∫ 𝑑34𝐺0(1,3)Σ(3,4)𝐺(4,2) 

Σxc(1,2) = 𝑖∫ 𝑑34𝑊(1+, 3)𝐺(1,4)Γ(4,2; 3) 

𝑃(1,2) = −𝑖∫ 𝑑34 𝐺(1,3)𝐺(4,1+)Γ(3,4; 2) 

𝑊(1,2) = 𝑉𝐶(1,2) + ∫ 𝑑34𝑉𝐶(1,3)𝑃(3,4)𝑊(4,2) 

Γ(1,2; 3) = 𝛿(1,2)𝛿(1,3) + ∫ 𝑑4567
𝛿Σxc(1,2)

𝛿𝐺(4,5)
𝐺(4,6)𝐺(7,5)Γ(6,7; 3) 

By self-consistently solving them, one can rigorously obtain the Green’s function. When the 

vertex function is approximated as the product of delta functions, it corresponds to 

approximating as Σxc(1,2) = 𝑖∫ 𝑑34𝑊(1+, 3)𝐺(1,4). This is the reason why it is called the GW 

approximation. This approximation also means to taking 𝑃(1,2) = −𝑖∫ 𝑑34 𝐺(1,3)𝐺(4,1+), 

which indicates two particles are propagating independently. As a higher order approximation, 

one can use the first order approximation 

Γ(1,2; 3) = 𝛿(1,2)𝛿(1,3) + ∫ 𝑑4567
𝛿Σxc(1,2)

𝛿𝐺(4,5)
𝐺(4,6)𝐺(7,5) 

to obtain the polarization. The resulting set of equations is called the GW + Bethe Salpeter 

equation. 

 

To describe the equation, it is convenient to use the four-point response function defined 

above 

𝜒(1,2; 1′, 2′) = 𝐿(1,1′, 2,2′) = i𝐺2(1,1′, 2,2′) − 𝐺(1,1′)𝐺′2′, 2). 

It can be derived by Schwinger that this quantity is given as a response of the Green’s function 
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𝐺(1,1′) perturbed by a nonlocal external potential 𝑢(2,2) as 

𝐿(1,1′, 2,2′) = −i
δG(1,1′)

δu(2,2)
. 

Using the identity of the functional derivative, 

𝛿𝐹(1,1′)

𝛿𝐺(3)
= − ∫ 𝐹(1,3)

𝛿𝐹−1(3,3′)

𝛿𝐺(2)
𝐹(3′, 1′)𝑑3𝑑3′, 

we obtain 

δG(1,1′)

δu(2,2′)
= − ∫ 𝐺(1,3)𝐺(3′, 1′)

δG−1(3,3′)

δu(2,2′)
𝑑3𝑑3′. 

When this is substituted into the Dyson equation 

𝐺−1(3,3′) = 𝐺0
−1(3,3′) − 𝑢(3,3′) − Σ(3,3′), 

We obtain 

δG(1,1′)

δu(2,2′)
= G(1,2)G(2′, 1) + ∫ 𝐺(1,3)𝐺(3′, 1′)

δΣ(3,3′)

δu(2,2′)
𝑑3𝑑3′

= G(1,2)G(2′, 1) + ∫ 𝐺(1,3)𝐺(3′, 1′)
δΣ(3,3′)

δG(4,4′)

δG(4,4′)

δu(2,2′)
𝑑3𝑑3′𝑑4𝑑4′. 

The first term in the left-hand side, or the product of the Green’s functions, is regarded as the 

four-point response function within the independent pair approximation. Therefore, it will be 

denoted as 𝐿0(1,1′, 2,2′). The second term contains the derivative of the self-energy, which 

will be denoted as 

𝐾(3,3′, 4,4′) = i
δΣ(3,3′)

δG(4,4′)
. 

This quantity is the electron-hole interaction kernel because it relates the non-interacting 

response function with the interacting one as 

𝐿(1,1′, 2,2′) = 𝐿0(1,1′, 2,2′) + ∫ 𝐿0(1,1′, 3,3′)𝐾(3,3′, 4,4′)𝐿(4,4′, 2,2′)𝑑3𝑑3′𝑑4𝑑4′. 

The kernel 𝐾 can be decomposed into the Hartree and exchange-correlation contributions. 

The former 

𝐾x(3,3′, 4′) ≡ 𝑖
δΣH(3,3′)

δG(4,4′)
 

is called bare Coulomb exchange interaction and can be described as 

𝐾x(3,3′, 4′) = 𝛿(3,3′)𝛿(4,4′)𝑣(3,4). 

While the latter is given within the 𝐺𝑊 approximation as 

𝑖
δΣ𝐺𝑊(3,3′)

δG(4,4′)
= −𝛿(3,4)𝛿(3′, 4′)𝑊(3+, 3′) − 𝐺(3,3′)

δW(3+, 3′)

δG(4,4′)
. 

The functional derivative, the second term in the right-hand side, can be removed by using 
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the polarization, 𝑊 = 𝑣 + 𝑣𝑃𝑊, which provides the relation 𝛿𝑊 𝛿𝐺⁄ = 𝑊 𝛿𝑃 𝛿𝐺⁄ 𝑊 as 

𝑖
δΣ𝐺𝑊(3,3′)

δG(4,4′)
= −𝛿(3,4)𝛿(3′, 4′)𝑊(3+, 3′) − ∫ 𝐺(3,3′)𝑊(3+, 5)

δ𝑃(5,6)

δ𝐺(4,4′)
𝑊(6,3′)𝑑5𝑑6. 

Using the approximation 𝑃 = −𝐺𝐺, 

𝑖
δΣ𝐺𝑊(3,3′)

δG(4,4′)
= −𝛿(3,4)𝛿(3′, 4′)𝑊(3+, 3′)

+ i ∫ 𝐺(3,3′)𝑊(3+, 5)
δ(𝐺(5,6)𝐺(6,5+))

δ𝐺(4,4′)
𝑊(6,3′)𝑑5𝑑6, 

and further, 

𝑖
δΣ𝐺𝑊(3,3′)

δG(4,4′)
= −𝛿(3,4)𝛿(3′, 4′)𝑊(3+, 3′) + 𝑖𝑊(3+, 4)𝐺(4′, 4+)𝑊(4′, 3′)

+ 𝑖𝑊(3+, 4′)𝐺(4′, 4+)𝑊(4, 3′). 

The first term is called the direct term, and the second and third terms are called second-

order correction terms. 

𝐾x(3,3′, 4,4′) = 𝛿(3,3′)𝛿(4,4′)𝑣(3,4) 

𝐾d(3,3′, 4,4′) = −𝛿(3,4)𝛿(3′4′)𝑊(3+, 3′) 

𝐾′(3,3′,4,4′) = −𝐺(3,3′)
𝛿𝑊(3,3+)

𝛿𝐺(4,4′)
. 

It is important that this GW + Bethe Salpeter equation can be rewritten using the Kohn-Sham 

orbitals as basis. The resulting equation is formally the same as the response function 

appeared above in TD-DFT, 

𝜒(𝑟𝑡, 𝑟′𝑡′) = 𝜒KS(𝑟𝑡, 𝑟′𝑡′) + ∭ 𝜒𝐾𝑆(𝑟𝑡, 𝑟1𝑡1) [
𝛿(𝑡1 − 𝑡2)

|𝑟1 − 𝑟2|
+ 𝐾xc(𝑟1𝑡1, 𝑟2𝑡2)] 𝜒(𝑟2𝑡2, 𝑟′𝑡′). 

When we take the standpoint that the response function is given as a functional of the electron 

density through the KS orbitals, this is a density functional theory with advanced form for the 

exchange-correlation. 

 

Direct random phase approximation 

   Let us go back to the density functional theory again. One of the crude approximations to 

the response function was to take the direct term only, which is within the adiabatic 

connection path 

𝐾Hxc
𝜆 (𝒓1, 𝒓2; 𝜔) ≃ 𝐾H

𝜆(𝒓1, 𝒓2) = 𝜆𝑣(𝒓1, 𝒓2).                                                           (4.28) 

When this is used, the resulting equation for the response function is 

𝜒𝜆(𝒓1, 𝒓2; 𝜔) = 𝜒0(𝒓1, 𝒓2; 𝜔) + 𝜆 ∭ 𝜒0(𝒓1, 𝒓3; 𝜔)𝑣(𝒓3, 𝒓4)𝜒𝜆(𝒓4, 𝒓2; 𝜔).         (4.29) 

By this we can define the correlation functional within this approximation called direct RPA 
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as 

𝐸c
dRPA = −

1

2
∫ 𝑑𝜆

1

0

∫
𝑑𝜔

2𝜋i
𝑒−i𝜔0+

 
∞

∞

[𝜆 ∭
𝜒0(𝒓1, 𝒓3; 𝜔)𝜒0(𝒓4, 𝒓2; 𝜔)

|𝒓1 − 𝒓2||𝒓3 − 𝒓4|
𝑑𝒓1𝑑𝒓2𝑑𝒓3𝑑𝒓4

+ 𝜆2 ∭
𝜒0(𝒓1, 𝒓3; 𝜔)𝜒0(𝒓4, 𝒓5; 𝜔)𝜒0(𝒓6, 𝒓2; 𝜔)

|𝒓1 − 𝒓2||𝒓3 − 𝒓4||𝒓5 − 𝒓6|
𝑑𝒓1𝑑𝒓2𝑑𝒓3𝑑𝒓4𝑑𝒓5𝑑𝒓6

+ ⋯ ]   (4.30) 

 

Practical formulation of dRPA 

Equation (4.29) can be expressed using the four-point response function as 

i𝜒𝜆(𝒙𝟏, 𝒙2, 𝒙𝟏
′ , 𝒙2

′ ; 𝜏)

= ⟨Ψ𝜆|𝑇[𝑛̂1
𝜆(𝒙1, 𝒙1

′ ; 𝑡1)𝑛̂1
𝜆(𝒙2, 𝒙2

′ ; 𝑡2)]|Ψ𝜆⟩

− ⟨Ψ𝜆|𝑛̂1
𝜆(𝒙1, 𝒙1

′ ; 𝑡1)|Ψ𝜆⟩⟨Ψ𝜆|𝑛̂1
𝜆(𝒙2, 𝒙2

′ ; 𝑡2)|Ψ𝜆⟩.             (4.34) 

Within dRPA the Dyson equation for the response function is 

𝜒𝜆
dRPA(𝒙1, 𝒙2, 𝒙1

′ , 𝒙2
′ ; 𝜔)

= 𝜒0(𝒙1, 𝒙2, 𝒙1
′ , 𝒙2

′ ; 𝜔)

+ ∭ 𝑑𝒙3𝑑𝒙4𝑑𝒙5𝑑𝒙6𝜒0(𝒙1, 𝒙4, 𝒙1
′ , 𝒙3; 𝜔)𝐾H

𝜆(𝒙3, 𝒙6; 𝒙4, 𝒙5) 𝜒𝜆
dRPA(𝒙5, 𝒙2, 𝒙6, 𝒙2

′ ; 𝜔)    (4.36) 

with the kernel being given by 

𝐾H
𝜆(𝒙1, 𝒙2, 𝒙1

′ , 𝒙2
′ ) = 𝜆𝑣(|𝒓1 − 𝒓2|)𝛿(𝒙1 − 𝒙′

1)𝛿(𝒙2 − 𝒙′
2) 

Note that the non-interacting kernel can be given by the KS orbitals as 

𝜒0(𝒙1, 𝒙2, 𝒙1
′ , 𝒙2

′ ; 𝜔) = ∑ [
𝜙𝑖

∗(𝒙1
′ )𝜙𝑎(𝒙1)𝜙𝑎

∗(𝒙2
′ )𝜙𝑖(𝒙2)

𝜔 − (𝜀𝑎 − 𝜀𝑖) + i0+
−

𝜙𝑖
∗(𝒙2

′ )𝜙𝑎(𝒙2)𝜙𝑎
∗(𝒙1

′ )𝜙𝑖(𝒙1)

𝜔 + (𝜀𝑎 − 𝜀𝑖) − i0+
]

𝑖≤𝑁<𝑎

 

 

Now we take a basis representation. The basis is formed using the combined occupied and 

unoccupied orbitals as 

𝑓𝑖𝑎(𝒙1, 𝒙1
′ ) = 𝜙𝑖

∗(𝒙1
′ )𝜙𝑎(𝒙1) 

𝑓𝑎𝑖(𝒙1, 𝒙1
′ ) = 𝜙𝑎

∗(𝒙1
′ )𝜙𝑖(𝒙1). 

Then 𝜒0 can be expanded as 

𝜒0(𝒙1, 𝒙2, 𝒙1
′ , 𝒙2

′ ; 𝜔) ∑[𝜒0]𝑝𝑞𝑓𝑝(𝒙1, 𝒙1
′ )𝑓𝑞

∗(𝒙2, 𝒙2
′ )

𝑝𝑞

 

where 

[𝜒0(𝜔)]𝑖𝑎,𝑗𝑏 =
𝛿𝑖𝑗𝛿𝑎𝑏

𝜔 − (𝜀𝑎 − 𝜀𝑖) + i0+
  

[𝜒0(𝜔)]𝑎𝑖,𝑏𝑗 =
𝛿𝑖𝑗𝛿𝑎𝑏

𝜔 + (𝜀𝑎 − 𝜀𝑖) − i0+
 

[𝜒0(𝜔)]𝑖𝑎,𝑏𝑗 = [𝜒0(𝜔)]𝑎𝑖,𝑗𝑏 = 0. 
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Therefore, in a matrix representation 

(𝜒0)−1(𝜔) = − [(
𝚫𝜺 𝟎
𝟎 𝚫𝜺

) − 𝜔 (
𝟏 𝟎
𝟎 −𝟏

)]                           (4.39) 

with 

Δ𝜀𝑖𝑎,𝑗𝑏 ≡ (𝜀𝑎 − 𝜀𝑖)𝛿𝑖𝑗𝛿𝑎𝑏. 

Then 

(𝜒𝜆
dRPA)

−1
(𝜔) = − [(

𝐀λ 𝑩𝜆

𝑩𝜆
∗ 𝐀𝜆

∗ ) − 𝜔 (
𝟏 𝟎
𝟎 −𝟏

)]                              (4.40) 

with  

(𝐴𝜆)𝑖𝑎,𝑗𝑏 = Δ𝜀𝑖𝑎,𝑗𝑏 + 𝜆⟨𝜙𝑎𝜙𝑗|𝜙𝑖𝜙𝑏⟩ 

(𝐵)𝑖𝑎,𝑗𝑏 = 𝜆⟨𝜙𝑎𝜙𝑏|𝜙𝑖𝜙𝑗⟩.                                                               (4.41) 

To take the inverse in Eq. (4.40), we solve the generalized eigenvalue problem 

(
𝐀λ 𝑩𝜆

𝑩𝜆
∗ 𝐀𝜆

∗ ) (
𝑿𝑛,𝜆

𝒀𝑛,𝜆
) = 𝜔𝑛

𝜆 (
𝟏 𝟎
𝟎 −𝟏

) (
𝑿𝑛,𝜆

𝒀𝑛,𝜆
)                                 (4.42) 

Under the normalization condition for the eigenvectors (X ,Y), the response function is 

𝝌𝜆
dRPA(𝜔) = ∑ [

1

𝜔 − 𝜔𝑛
𝜆 + 𝑖0+

(
𝑿𝑛,𝜆

𝒀𝑛,𝜆
) (𝑿𝑛,𝜆

† 𝒀𝑛,𝜆
† ) −

1

𝜔 + 𝜔𝑛
𝜆 − 𝑖0+

(
𝑿𝑛,𝜆

∗

𝒀𝑛,𝜆
∗ ) (𝑿𝑛,𝜆

∗† 𝒀𝑛,𝜆
∗† )]

𝑛

, 

and the correlation part of the two-body density matrix is then 

𝒏2,c
𝜆,dRPA = − ∫

𝑑𝜔

2𝜋i
𝑒i𝜔0+

[𝝌𝜆(𝜔) − 𝝌0(𝜔)]
∞

∞

= ∑ [(
𝒀𝑛,𝜆

∗ 𝒀𝑛,𝜆
∗† 𝒀𝑛,𝜆

∗ 𝑿𝑛,𝜆
∗†

𝑿𝑛,𝜆
∗ 𝒀𝑛,𝜆

∗† 𝑿𝑛,𝜆
∗ 𝑿𝑛,𝜆

∗† ) − (
𝟎 𝟎
𝟎 𝟏

)]

𝑛

 

Therefore, the correlation functional is given by 

𝐸c
dRPA =

1

2
∫ 𝑑𝜆

1

0

∑ ∑⟨𝜙𝑖𝜙𝑏|𝜙𝑎𝜙𝑗⟩(𝑌𝑛,𝜆)
𝑖𝑎

∗
(𝑌𝑛,𝜆)

𝑗𝑏
+ ⟨𝜙𝑖𝜙𝑗|𝜙𝑎𝜙𝑏⟩(𝑋𝑛,𝜆)

𝑖𝑎

∗
(𝑋)𝑗𝑏

𝑛𝑖𝑗≤𝑁<𝑎𝑏

+ ⟨𝜙𝑎𝜙𝑏|𝜙𝑖𝜙𝑗⟩(𝑋𝑛,𝜆)
𝑖𝑎

∗
(𝑌𝑛,𝜆)

𝑗𝑏
+ ⟨𝜙𝑖𝜙𝑏|𝜙𝑎𝜙𝑗⟩ [(𝑋)𝑖𝑎

∗ (𝑋𝑛,𝜆)
𝑗𝑏

− 𝛿𝑖𝑗𝛿𝑎𝑏]. 

This is the formulation within the direct RPA. There are other formulations as well depending 

on how the 𝜆 integration is done efficiently by introducing approximations/assumptions. 

   Most of the dRPA calculations are done non-self-consistently using a lower-level electron 

density although self-consistent calculation can be done using the optimized effective 

potential scheme. With this, we can incorporate the van der Waals interaction. Yet, this 

scheme is not free-from the self-interaction, that will affect insulators more significantly. To 

overcome it, one can add the exchange to the direct term as 

𝐾Hxc
λ (𝒓1, 𝒓2; 𝜔) ≃ 𝐾Hx

λ (𝒓1, 𝒓2; 𝜔) = 𝜆𝑣(𝒓1, 𝒓2) + 𝜆𝐾𝑥(𝒓1, 𝒓2; 𝜔). 

This approach is found to correct the problem only minorly. It is thus necessary to go beyond 

the RPA approach by adding terms that include the vertex correction. 
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Linear response within classical statistical physics 

   Here I discuss a theory of density correlation for a classical many-body stem to be 

compared with DFT. The method is based on the standard statistical physics of a grand 

canonical ensemble. We start from the Ornstein Zernike (OZ) equation. For detail, please 

read the article written by Prof. Sato, (http://j-molsci.jp/archives/AC0004.pdf). 

 

We now see how the correlation factors are described in a classical system 

(a) fluctuation and correlation 

Let us define the density operator 

𝛿𝑛(𝑟) = ∑ 𝛿(𝑟 − 𝑟𝑖)

𝑁

𝑖=1

− 𝑛0, 

where 𝑛0  is the density averaged over the whole system. The average of 𝛿𝑛(𝑟) over the 

ensemble is zero, or 

〈∑ 𝛿(𝑟 − 𝑟𝑖)

𝑁

𝑖=1

〉 = 𝑛0. 

The density fluctuation can be written as 

〈𝛿𝑛(𝑟)𝛿𝑛(𝑟′)〉 = 〈∑ 𝛿(𝑟 − 𝑟𝑖)

𝑁

𝑖=1

∑ 𝛿(𝑟′ − 𝑟𝑗)

𝑁

𝑗=1

〉 − 2𝑛0 〈∑ 𝛿(𝑟 − 𝑟𝑖)

𝑁

𝑖=1

〉 + 𝑛0
2

= 〈∑ 𝛿(𝑟 − 𝑟𝑖)

𝑁

𝑖=1

𝛿(𝑟′ − 𝑟𝑖)〉 + 〈 ∑ 𝛿(𝑟 − 𝑟𝑖)

𝑁

𝑖,𝑗=1,𝑖≠𝑗

𝛿(𝑟′ − 𝑟𝑗)〉 − 𝑛0
2

= 𝑛0δ(𝑟 − 𝑟′) + 𝑛0
2𝑔(𝑟, 𝑟′) − 𝑛0

2 = 𝑛0δ(𝑟 − 𝑟′) + 𝑛0
2ℎ(𝑟, 𝑟′) 

where 𝑔 is the pair correlation function 

𝑔(𝑟, 𝑟′) ≡ 〈 ∑ 𝛿(𝑟 − 𝑟𝑖)

𝑁

𝑖,𝑗=1,𝑖≠𝑗

𝛿(𝑟′ − 𝑟𝑗)〉 

and ℎ is called as the total correlation function (two-body density matrix over square of the 

particle density) 

ℎ(𝑟, 𝑟′) ≡ 𝑔(𝑟, 𝑟′) − 1. 

Note that similar quantities have been discussed above although the naming is somewhat 

different. (𝑛0
2ℎ(𝑟, 𝑟′) ↔  𝑛2(𝒓, 𝒓′)) 

 

To relate the correlation with the response function, it is convenient to introduce a functional 

derivative scheme. In the first step, let us relate the correlation with the partition function. 

(b) grand partition function and grand distribution function 
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   Then, we focus on the grand partition function. For a system described by the Hamiltonian, 

𝐻 = ∑
1

2𝑚𝑖
𝑝⃗𝑖

2

𝑁

𝑖

+ 𝑈𝑁(1, ⋯ , 𝑁), 

the partition function is written as, using the thermal de Broglie wave length 𝛬 =

ℎ/√2𝜋𝑚𝑘𝐵𝑇, 

Ξ = ∑ ∭
1

Λ3𝑁𝑁!
exp[−𝛽(𝑈𝑁(1, ⋯ , 𝑁) − 𝜇)] 𝑑(1 … 𝑁)

∞

𝑁=0

 

= ∑ ∭
𝑧𝑁

𝑁!
exp[−𝛽𝑈𝑁(1, ⋯ , 𝑁)] 𝑑(1 … 𝑁)

∞

𝑁=0

, 

where 𝑧 is the activity 

𝑧 = Λ−3 exp(𝛽𝜇), 

and the 𝑚-particle distribution function (classical analogue of the 𝑚-body density matrix) is 

given as 

𝑛(𝑚)(1, ⋯ , 𝑚) =
1

Ξ
∑ ∭ 𝑑(1 … 𝑁)

𝑧𝑁

𝑁!
exp[−𝛽𝑈𝑁(1, ⋯ , 𝑁)]

∞

𝑁=0

× ∑ ∑ ⋯ ∑ 𝛿(1 − 𝑟𝑖)𝛿(2 − 𝑟𝑗) ⋯ 𝛿(𝑛 − 𝑟𝑘)

𝑘≠𝑖,𝑗,⋯𝑗≠𝑖𝑖

. 

This can be rewritten as a sum of multiples of the canonical partition function 𝑍𝑁 and the 

canonical distribution function 𝑛𝑁
(𝑚)

  

𝑛(𝑚)(1, ⋯ , 𝑚) =
1

Ξ
∑

𝑧𝑁

𝑁!
𝑍𝑁𝑛𝑁

(𝑚)(1, ⋯ , 𝑚)

∞

𝑁=0

 

Note that 

∭ 𝑑(1 … 𝑁)𝑛𝑁
(𝑚)(1, ⋯ , 𝑚) =

𝑁!

(𝑁 − 𝑚)!
. 

 

Now that the correlation functions are given in terms of the partition function, let us consider 

the functional derivative method. 

(c) Functional derivative 

   When the potential energy consists of the external potential and the rest as 

𝑈𝑁(1, ⋯ , 𝑁) = ∑ 𝑉(𝑖)

𝑁

𝑖=1

+ 𝑈′𝑁(1, ⋯ , 𝑁) 

the grand partition function can be written using generalized activity 

𝑧(𝑟) = 𝑧 exp[−𝛽𝑉(𝑟)] 

𝑧(𝑖) = 𝑧 exp[−𝛽𝑉(𝑟𝑖)] 

as 



43 

 

Ξ = ∑ ∭
1

𝑁!
(∏ 𝑧(𝑖)

𝑁

𝑖=1

) exp[−𝛽(𝑈′
𝑁(1, ⋯ , 𝑁))] 𝑑(1 … 𝑁)

∞

𝑁=0

. 

When this is differentiated by 𝑧(𝑟), we get 

δΞ

δ𝑧(𝑟)
= ∑ ∭

1

𝑁!
∑

δ𝑧(𝑖)

δ𝑧(𝑟)
𝑖

( ∏ 𝑧(𝑗)

𝑁

𝑗=1,𝑗≠𝑖

) exp[−𝛽(𝑈′
𝑁(1, ⋯ , 𝑁))] 𝑑(1 … 𝑁)

∞

𝑁=0

= ∑ ∭
1

𝑁!
∑ 𝛿(𝑟𝑖 − 𝑟)

𝑖

( ∏ 𝑧(𝑗)

𝑁

𝑗=1,𝑗≠𝑖

) exp [−𝛽(𝑈′𝑁(1, ⋯ , 𝑁))]𝑑(1 … 𝑁)

∞

𝑁=0

= ∑ ∭
1

(𝑁 − 1)!
(∏ 𝑧(𝑗)

𝑁

𝑗=2

) exp[−𝛽(𝑈′
𝑁(𝑟, 2, ⋯ , 𝑁))] 𝑑(2 … 𝑁)

∞

𝑁=0

. 

Comparing with the above equations for the distribution functions, we can show 

𝑛(1)(𝑟) =
𝑧(𝑟)

Ξ

δΞ

δ𝑧(𝑟)
=

δ ln Ξ

δ ln 𝑧(𝑟)
 

𝑛(2)(𝑟, 𝑟′) = 𝑧(𝑟′)
δ𝑛(1)(𝑟)

δ𝑧(𝑟′)
=

δ𝑛(1)(𝑟)

δ ln 𝑧(𝑟′)
. 

Note that δ ln 𝑧(𝑟) = −𝛽δ𝑉(𝑟), so that 

𝑛(2)(𝑟, 𝑟′) = −𝑘𝐵𝑇
δ𝑛(1)(𝑟)

δ𝑉(𝑟′)
. 

This is a fluctuation dissipation theorem in the sense that the two-body density is related to 

the response of the density to the local potential. 

   Let us then consider inverse of the response function 

−𝛽
δ𝑛(1)(𝑟)

δ𝑉(𝑟′)
. 

This should be the inverse of the non-interacting response function minus the interaction 

kernel. When no interaction exists, 

𝑛0
(1)(𝑟) = exp[−𝛽𝑉(𝑟)], 

so that 

𝜒(0)−1(𝑟, 𝑟′) = −𝛽
𝛿𝑉(𝑟)

𝛿𝑛(1)(𝑟′)
=

𝛿(𝑟 − 𝑟′)

𝑛0
(1)

(𝑟)
. 

Deviation from this is the result of the interaction, which will be denoted by 𝐾(𝑟, 𝑟′) as 

𝜒−1(𝑟, 𝑟′) ≡
δ ln 𝑧(𝑟)

δ𝑛(1)(𝑟′)
= −𝛽

𝛿𝑉(𝑟)

𝛿𝑛(1)(𝑟′)
≡

𝛿(𝑟 − 𝑟′)

𝑛(1)(𝑟)
− 𝐾(𝑟, 𝑟′). 

When we use the chain rule 
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∫
𝛿𝑛(1)(𝑟)

𝛿 ln 𝑧(𝑟′′)

𝛿 ln 𝑧(𝑟′′)

𝛿𝑛(1)(𝑟′)
= 𝛿(𝑟 − 𝑟′) 

we get 

∫(𝑛(𝑟)δ(𝑟 − 𝑟′′) + 𝑛(𝑟)ℎ(𝑟, 𝑟′′)𝑛(𝑟′′)) (
𝛿(𝑟′′ − 𝑟′)

𝑛(𝑟′′)
− 𝐾(𝑟′′, 𝑟′)) 𝑑𝑟′′ = 𝛿(𝑟 − 𝑟′), 

and further 

𝑛(𝑟)ℎ(𝑟, 𝑟′) − 𝑛(𝑟)𝐾(𝑟, 𝑟′) − 𝑛(𝑟) ∫ ℎ(𝑟, 𝑟′′)𝑛(𝑟′′)𝐾(𝑟′′, 𝑟′) 𝑑𝑟′′ = 0 

ℎ(𝑟, 𝑟′) − 𝐾(𝑟, 𝑟′) − ∫ ℎ(𝑟, 𝑟′′)𝑛(𝑟′′)𝐾(𝑟′′, 𝑟′) 𝑑𝑟′′ = 0 

which is the OZ equation to relate the inverse of the response function with the density 

correlation via a Dyson-like equation. Note that this derivation shows that OZ does not 

require a pair-wise interaction. When the interaction kernel 𝐾 is given as a functional of the 

density 𝑛(𝒓) using the DFT for classical particles, the correlation ℎ is determined. In the 

classical DFT, there are known approximate and explicit relation of 𝐾  and ℎ  when the 

particles are interacting via a two-body force. The relation is called as a closure and the famous 

ones are the hypernetted chain closure and the Percus-Yevic closure. 

 

Nonadiabatic coupling of electrons and nuclei (ions) 

 

Here we consider the whole system, consisting of electrons and ions, quantum mechanically 

although ions have been treated classically so far. We will go beyond the Born-Oppenheimer 

(BO) approximation here. By the way, what was the BO approximation? 

 

BO approximation is explained as originating from large difference in mass between an 

electron and a nucleus; even for proton the ratio is 1/1700. For heavier elements, the ratio 

amounts to that of Earth over Sun. It is no wonder to decouple the motion of nuclei from that 

of electrons. Even though BO approximation will be generally valid to first order 

approximation, there are phenomena related to breaking down of BO approximation. Such 

occurs for chemical reactions, electronic friction, and so on. 

 

Now let us discuss it quantitatively using the BO theory. 

 

As the starting point, let us consider the system with 

𝐻̂ = −
ℏ2

2𝑀
∇𝑅

2 −
ℏ2

2𝑚
∇𝑟

2 + 𝑉(𝑅, 𝑟) 
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where an electron with coordinate 𝑟 and mass 𝑚 and a nucleus with coordinate 𝑅 and mass 

𝑀 is interacting via 𝑉(𝑅, 𝑟). The time-dependent Schrödinger equation is 

𝑖ℏ𝜕𝑡Ψ(𝑟, 𝑅, 𝑡) = 𝐻̂Ψ(𝑟, 𝑅, 𝑡). 

 

When 𝑀 ≫ 𝑚, naïve approximation is to neglect the first term in the Hamiltonian and treat 

the nuclear coordinate classically. It can be also assumed that the nuclear velocity is much 

smaller than the electronic one, by which the electrons will have enough time to deexcite to 

the ground state via coupling to environmental degrees of freedom, like electromagnetic field, 

phonon, and so on. In that case, one need to solve a static equation 

𝐻̂𝑒𝑙(𝑅(𝑡)) = −
ℏ2

2𝑚
∇𝑟

2 + 𝑉(𝑟; 𝑅(𝑡)) 

𝐻̂elΨel(𝑟; 𝑅(𝑡)) = 𝐸𝑒𝑙(𝑅(𝑡))Ψel(𝑟; 𝑅(𝑡)) 

where 𝐸𝑒𝑙(𝑅(𝑡)) is the ground state energy of electrons for a given configuration of nuclei, 

which is usually called the BO potential energy surface. The classical nuclei will evolve with 

time according to the Newton equation 

𝑀𝜕𝑡
2𝑅(𝑡) = −∇R𝐸𝑒𝑙(𝑅(𝑡)). 

 

Let us derive this more formally. To do this, we prepare a complete set of the electronic 

Hamiltonian and expand the whole wave function as 

Ψ(𝑟, 𝑅, 𝑡) = ∑ 𝜒𝑛(𝑅, 𝑡)𝜓𝑛(𝑟; 𝑅)

𝑛

, 

where 

𝐻̂el𝜓n(𝑟; 𝑅) = 𝐸𝑛(𝑅)𝜓𝑛(𝑟; 𝑅). 

Note that the nuclear coordinate is treated quantum mechanically through the nuclear wave 

function 𝜒𝑛(𝑅, 𝑡) , which is introduced as the expansion coefficient. 𝜓𝑛(𝑟; 𝑅)  is time-

independent and is given as a function of parameter 𝑅; time-dependence is considered only 

through 𝜒. 

 

The nuclear wave function follows an equation of motion, which can be straightforwardly 

obtained by applying the whole wave function into the starting time-dependent Schrödinger 

equation 

𝑖ℏ𝜕𝑡𝜒𝑚(𝑅, 𝑡) = [−
ℏ2

2𝑀
∇𝑅

2 + 𝐸𝑚(𝑅)] 𝜒𝑚(𝑅, 𝑡) 

−
ℏ2

𝑀
∑⟨𝜓𝑚|∇𝑅|𝜓𝑛⟩∇𝑅𝜒𝑛(𝑅, 𝑡)

𝑛

−
ℏ2

2𝑀
∑⟨𝜓𝑚|∇𝑅

2 |𝜓𝑛⟩𝜒𝑛(𝑅, 𝑡)

𝑛

       (1). 
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When the first term in the right-hand side is larger than the second and third terms, the 

nuclear wave function of 𝑚-th excited state 𝜒𝑚(𝑅, 𝑡) follows quantum equation of motion 

given by the corresponding potential surface 𝐸m(𝑅). Then 𝜒𝑚(𝑅, 𝑡) can be regarded as the 

wave packet. The centroid of 𝜒𝑚(𝑅, 𝑡) follows the Newton equation. This corresponds to the 

BO approximation. 

 

Because of the second and third terms, the nuclear wave packets are interfering with each 

other. The BO approximation thus breaks down. The second term represents a coupling 

through the first-order nonadiabatic coupling (NAC) vector 

⟨𝜓𝑚|∇𝑅|𝜓𝑛⟩ 

and the third term represents the coupling through the second-order NAC ⟨𝜓𝑚|∇𝑅
2 |𝜓𝑛⟩. 

 

The first-order NAC vector can be rewritten as 

⟨𝜓𝑚|∇𝑅|𝜓𝑛⟩ =
⟨𝜓𝑚|(∇𝑅𝐻̂)|𝜓𝑛⟩

𝐸n − 𝐸𝑚
. 

This indicates that NAC should be very large when there is a degeneracy of the BO surface. 

When the numerator is non-zero, the coupling diverges at the degenerate point, which is 

usually called as crossing point. The BO surfaces generally looks like a Dirac cone of graphene 

because of linear behavior of the BO surfaces. Therefore, the crossing point is sometimes 

called as a conical intersection. 

The breakdown of the BO surfaces can happen at the crossing point even when the nuclear 

mass is large. For metals, the crossing should occur. For example, when a charged particle 

approaches a metal surface, the ground state will be mixed with excited states though which 

energy transfer occurs from the particle to the surface. The particle is then decelerated. This 

phenomenon is called electronic friction. This contrasts the friction generally occurring for 

insulators, where the energy transfer occurs from the particle to phonon. 

 

On the other hand, the coupling ⟨𝜓𝑚|∇𝑅|𝜓𝑛⟩ is generally large for insulators although the 

crossing does not usually occur between the ground state and the first-excited state; this is 

reflected from the large electron-phonon coupling. The crossing, however, can occur between 

two excited states. Therefore, the mixing occurs in excited states dynamics. Suppose there is 

a potential surface that may lead to a dissociation of a molecule and another one that may not. 

Depending on the velocity of the wave packet ∇𝑅𝜒𝑛(𝑅, 𝑡), the second term in the Hamiltonian 

(Eq. (1)) can be large or small; the faster the velocity the larger the coupling is. This explains 

behavior of fast chemical reaction occurring after photo-excitation. 
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How to access the NAC vector 

To get the value of NAC vector, one needs to evaluate the change of the many-body wave 

function (eigenstate of the electronic Hamiltonian) with respect to displacement of nucleus, 

⟨𝜓𝑚|∇𝑅|𝜓𝑛⟩, which is usually too difficult to achieve. In this context, let us recall the equation 

⟨𝜓𝑚|∇𝑅|𝜓𝑛⟩ =
⟨𝜓𝑚|(∇𝑅𝐻̂)|𝜓𝑛⟩

𝐸𝑛 − 𝐸𝑚
=

⟨𝜓𝑚|∇𝑅 (
−𝑍𝑒2

|𝑟 − 𝑅|
) |𝜓𝑛⟩

𝐸𝑛 − 𝐸𝑚
≡

⟨𝜓𝑚|ℎ(𝑅)|𝜓𝑛⟩

𝐸𝑛 − 𝐸𝑚
, 

where ℎ(𝑟; 𝑅) ≡ ∇𝑅 (
−𝑍𝑒2

|𝑟−𝑅|
). Let us then compare it with the density response induced by the 

perturbation 𝑉ext(𝑟, 𝜔) = ℎ(𝑟; 𝑅)𝑒𝑖𝜔𝑡, that is, 

𝛿𝜌(𝑟, 𝜔) = ∫ 𝜒(𝑟, 𝑟′, 𝜔)𝑉ext(𝑟′, 𝜔)𝑑𝑟′ 

The response function is given by 

𝜒(𝑟, 𝑟′, 𝜔) = ∑ [
⟨𝜓0|𝜌̂(𝑟)|𝜓𝑛⟩⟨𝜓𝑛|𝜌̂(𝑟′)|𝜓0⟩

𝜔 − (𝐸𝑛 − 𝐸0) + 𝑖𝜂
−

⟨𝜓0|𝜌̂(𝑟′)|𝜓𝑛⟩⟨𝜓𝑛|𝜌̂(𝑟)|𝜓0⟩

𝜔 + (𝐸𝑛 − 𝐸0) + 𝑖𝜂
]

𝑛

, 

where 𝜌̂(𝑟) = ∑ 𝛿(𝑟 − 𝑟𝛼)𝑁
𝛼=1 . When taking ∫ 𝑑𝑟 𝛿𝜌(𝑟, 𝜔)𝑉ext(𝑟, 𝜔), the resulting quantity is 

proportional to 

∑ [
⟨𝜓0|𝑉ext|𝜓𝑛⟩⟨𝜓𝑛|𝑉ext|𝜓0⟩

𝜔 − (𝐸𝑛 − 𝐸0) + 𝑖𝜂
−

⟨𝜓0|𝑉ext|𝜓𝑛⟩⟨𝜓𝑛|𝑉ext|𝜓0⟩

𝜔 + (𝐸𝑛 − 𝐸0) + 𝑖𝜂
]

𝑛

= ∑ [
⟨𝜓0|ℎ(𝑅)|𝜓𝑛⟩⟨𝜓𝑛|ℎ(𝑅)|𝜓0⟩

𝜔 − (𝐸𝑛 − 𝐸0) + 𝑖𝜂
−

⟨𝜓0|ℎ(𝑅)|𝜓𝑛⟩⟨𝜓𝑛|ℎ(𝑅)|𝜓0⟩

𝜔 + (𝐸𝑛 − 𝐸0) + 𝑖𝜂
]

𝑛

 

of which the numerator is square of the NAC vector. This indicates that the NAC vector can 

be given by the susceptibility (correlation) of ℎ(𝑅).  

  

According to the time-dependent DFT, this can be given via the Dyson equation 

𝜒(𝑟, 𝑟′, 𝜔) = 𝜒𝐾𝑆(𝑟, 𝑟′, 𝜔) + ∫ 𝑑𝑟1𝑑𝑟2 𝜒𝐾𝑆(𝑟, 𝑟1, 𝜔)𝐾HXC(𝑟1, 𝑟2, 𝜔)𝜒(𝑟2, 𝑟′, 𝜔), 

where 

𝐾HXC(𝑟1, 𝑟2, 𝜔) =
1

|𝑟1 − 𝑟2|
+ 𝑓xc(𝑟1, 𝑟2, 𝜔) 

and 

𝜒𝐾𝑆(𝑟, 𝑟′, 𝜔) = 2 ∑ [
𝜑𝑖

∗(𝑟)𝜑𝑎(𝑟)𝜑𝑎
∗(𝑟′)𝜑𝑖(𝑟′)

𝜔 − (𝜀𝑎 − 𝜀𝑖) + i𝜂
−

𝜑𝑎
∗(𝑟)𝜑𝑖(𝑟)𝜑𝑖

∗(𝑟′)𝜑𝑎(𝑟′)

𝜔 + (𝜀𝑎 − 𝜀𝑖) − i𝜂
]

𝑖𝑎

, 

where 𝑖 (𝑎) runs over all the occupied (unoccupied) states. (Practically, one cannot take all 

the unoccupied states into account. One needs to introduce a cutoff). Therefore, by 

computing the susceptibility using the response function of TD-DFT, one can obtain the 
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value of NAC vector. There is a known compact form for the response function, known as 

Casida equation, which can be used to conveniently. TD-DFT is accessible by Quantum 

Espresso as well as may quantum chemical software packages like Gaussian. 

 

Recall that the TD-DFT equation was derived from the response of the Kohn-Sham artificial 

system to the change in the effective potential 

𝛿𝜌(𝑟, 𝑡) = ∫ 𝜒𝐾𝑆(𝑟𝑡, 𝑟′𝑡′)𝛿𝑣eff(𝑟′𝑡′)𝑑𝑟′ = ∫ 𝜒𝐾𝑆(𝑟𝑡, 𝑟′𝑡′)(𝛿𝑣ext(𝑟′𝑡′) + 𝛿𝑣HXC(𝑟′𝑡′))𝑑𝑟′

= ∫ 𝜒𝐾𝑆(𝑟𝑡, 𝑟′𝑡′)(𝛿𝑣ext(𝑟′𝑡′) + 𝑓HXC(𝑟′𝑡′, 𝑟′′𝑡′′)𝛿𝑣ext(𝑟′′𝑡′′))𝑑𝑟′, 

which is Fourier transformed to the previous equation. The quantity 𝑓HXC, or the Hartree 

exchange-correlation kernel, is a functional of the time-dependent density. Note that the 

adiabatic approximations (or ω-independent approximations) are usually adopted. Note also 

that the kernel formally plays a role of describing the interacting electrons and holes as does 

the exchange-correlation self-energy in the theory of Hedin. 

 

It is worth mentioning that the TD-DFT has been shown within the linear response scheme. 

But the importance of TD-DFT is in the fact that non-linear response can be accessed despite 

its limited accuracy originated from using approximate functionals. The linear response 

means a linear deviation from the ground state, which is generally invalid for representing the 

excited state density. The excited-state of a small molecules, for example, has a density that is 

very different from that of the ground state. The excitation is no more a small perturbation to 

the system. In that case, one should alternatively follow a real-time evolution of electrons, 

which can be achieved by integrating the time-dependent Kohn-Sham equation with respect 

to time. 

 

The simplest expansion formula like 

iℏ
φ𝑛(𝑡 + Δ𝑡) − φ𝑛(𝑡 − Δ𝑡)

2Δ𝑡
= (−

1

2
∇2 + 𝑉eff(𝑟𝑡)) 𝜑𝑛(𝑡)  

is not very appropriate in this case because this does not guarantee orthonormalization of the 

Kohn-Sham orbitals. In this context, it is convenient to use 

φ𝑛(𝑡 + Δ𝑡) = exp [−
1

iℏ
(−

1

2
𝛻2 + 𝑉eff(𝑟𝑡)) Δ𝑡] 𝜑𝑛(𝑡)

≃ exp [−
1

2iℏ
(−

1

2
𝛻2) Δ𝑡] exp [−

1

iℏ
𝑉eff(𝑟𝑡)Δ𝑡] exp [−

1

2iℏ
(−

1

2
𝛻2) Δ𝑡] 𝜑𝑛(𝑡) 

which guarantees the orthonormalization and thus advantageous for parallel computation. 
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When applying the classical approximation to nuclei as 

iℏ ∂tΨel(𝑟; 𝑅(𝑡)) = 𝐻̂elΨel(𝑟; 𝑅(𝑡)) 

𝑀𝜕𝑡
2𝑅(𝑡) = −∇R𝐸𝑒𝑙(𝑅(𝑡)) 

this coupled electronic and nuclear equation is called Ehrenfest equation of motion. This is a 

kind of mean-field approximation to the coupling of electrons and ions. In integrating this 

coupled electron-nucleus equation, one will encounter a problem of very different time-scale 

for the electronic and nuclear motion. The large difference in the time-scale makes the 

numerical approach very unstable. 

 

It is worth mentioning that the mixed classical-quantum approach like the Ehrenfest is known 

to introduce a fundamental problem; as note in many textbook of quantum mechanics, nuclear 

force derived thereby can be meaningless. Nuclear motion will be driven by the “force from 

electron” averaged over quantum states of electrons, which needs to be handled carefully. 

When, for example, there are two electronic states for which a nucleus will feel a dissociative 

force and a binding force, respectively. The nucleus will feel just an averaged force although, 

in proper quantum mechanical approach, the nuclear wave functions of dissociative and 

bound character should be used to describe the nuclear state. For a system of very small 

degrees of freedom, there are ways to avoid such problem but is not practical for large systems. 

 

There are movies on the Ehrenfest TD-DFT simulations, for example, on the internet. 

https://figshare.com/articles/Physical_Factors_Affecting_Charge_Transfer_at_the_Pe_CO

OH_TiO_sub_2_sub_Anatase_Interface/2238757 

One can observe a charge-transfer phenomenon that occurs between the adsorbate molecule 

Pe-COOH to a titania surface. The authors investigated how the charge transfer dynamics is 

affected by nuclear motion. 

 

Quantum mechanical behavior of nuclei 

Although nuclei are heavy, they behave as a classical particle at high temperatures. However, 

this is not always the case. Especially for hydrogen, or proton, the quantum effect is negligibly 

small. To take the quantum effect into account, at least approximately, one can use the path 

integral method. 

 

For this purpose, let us start from the Hamiltonian 

𝐻̂ = ∑
𝑃̂𝐼

2

2𝑀
𝐼

+ 𝐻𝑒(𝑟̂, 𝑝̂; 𝑅̂) 
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and adiabatic states |𝜓𝑖(𝑅)⟩. By decoupling the whole system into electronic and nuclear 

states as 

|𝜓𝑖(𝑅)⟩|𝑅⟩ ≡ |𝑖, 𝑅⟩ 

the following equation is assumed to hold 

𝐻𝑒(𝑟̂, 𝑝̂; 𝑅̂)|𝜓𝑖(𝑅)⟩|𝑅⟩ = 𝐸𝑖(𝑅)|𝜓𝑖(𝑅)⟩|𝑅⟩. 

 

We are interested in an equilibrium density at temperature 𝑇. Then we will derive a formula 

for the partition function 

𝑍 = Tr[exp(−𝛽𝐻̂)] = ∫ 𝑑𝑅 ∑⟨𝑖, 𝑅| exp(−𝛽𝐻̂) |𝑖, 𝑅⟩

𝑖

 

When the exponential is partitioned into 𝑃 parts by inserting the identity 

∫ 𝑑𝑅𝑖 ∑|𝑖𝑅⟩⟨𝑖𝑅|

𝑖

, 

we get 

𝑍 = ∫ 𝑑𝑅1 ⋯ 𝑑𝑅𝑃 ∑ ⟨𝑖, 𝑅| exp (−
𝛽
𝑃 𝐻̂) |𝑖𝑃, 𝑅𝑃⟩

𝑖1,⋯,𝑖𝑃

 

× ⟨𝑖𝑃, 𝑅𝑃| exp (−
𝛽
𝑃 𝐻̂) |𝑖𝑃−1, 𝑅𝑃−1⟩ ⋯ ⟨𝑖1, 𝑅1| exp (−

𝛽
𝑃 𝐻̂) |𝑖, 𝑅⟩ 

Then we need to evaluate terms like 

ρ(s, s − 1; τ) ≡ ⟨𝑖𝑠, 𝑅𝑠| exp (−
𝛽
𝑃

𝐻̂) |𝑖𝑠−1, 𝑅𝑠−1⟩ 

This can be approximated as 

ρ(s, s − 1; τ) ≃ ⟨𝜓0(𝑅𝑠)|𝜓0(𝑅𝑠−1)⟩ ⟨𝑅𝑠| exp (−
𝛽
𝑃

∑
𝑃̂𝐼

2

2𝑀𝐼
𝐼 ) |𝑅𝑠−1⟩ 

× exp (−
𝛽

𝑃

𝐸0(𝑅𝑠) + 𝐸0(𝑅𝑠−1)

2
 ) 𝛿𝑖𝑠,0𝛿𝑖𝑠−1,0 

from the adiabatic sense. The overlap appearing above can be approximated by using Taylor 

expansion as 

𝑆𝑠,𝑠−1 ≡ ⟨𝜓0(𝑅𝑠)|𝜓0(𝑅𝑠−1)⟩ = ∫ 𝑑𝑟𝜓0
∗(𝑟; 𝑅𝑠)𝜓0(𝑟; 𝑅𝑠−1)

= 1 +
1

2
∑(𝑅𝐼,𝑠−1, 𝑅𝐼,𝑠)(𝑅𝐽,𝑠−1, 𝑅𝐽,𝑠)

𝐼,𝐽

∫ 𝑑𝑟𝜓0
∗(𝑟; 𝑅𝑠)∇𝐼,𝑠∇𝐼,𝑠−1𝜓0(𝑟; 𝑅𝑠−1) 

where we have assumed that the wave function is real, so that we can apply 

∫ 𝑑𝑟𝜓0
∗(𝑟; 𝑅)∇𝐼𝜓0(𝑟; 𝑅) = 0. 

Since the derivative terms are small, we can reasonably assume that the overlap is small. Then 
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ρ(s, s − 1; τ) ≃ exp (−
𝛽

𝑃
∑

𝑀𝐼

2
𝐼

(
√𝑃

𝛽ℏ
)

2

(𝑅𝐼,𝑠 − 𝑅𝐼,𝑠−1)
2

) 

× exp (−
𝛽

𝑃

𝐸0(𝑅𝑠) + 𝐸0(𝑅𝑠−1)

2
 ) 𝛿𝑖𝑠,0𝛿𝑖𝑠−1,0 

Therefore, we have 

𝑍 = ∏ [(
𝑀𝐼𝑃

2𝜋𝛽ℏ
)

3𝑃
2

]

𝐼

∫ 𝑑𝑅1 ⋯ 𝑑𝑅𝑃 exp (−𝛽 ∑ ∑
𝑀𝐼

2
𝐼

(
√𝑃

𝛽ℏ
)

2

(𝑅𝐼,𝑠 − 𝑅𝐼,𝑠−1)
2

𝑠

+
1

𝑃
𝐸0(𝑅𝑠)) 

 

This has the same form as the partition function of classical systems having 𝑁 × 𝑃 particles 

interacting via 

Veff = ∑ ∑
𝑀𝐼

2
𝐼

(
√𝑃

𝛽ℏ
)

2

(𝑅𝐼,𝑠 − 𝑅𝐼,𝑠−1)
2

𝑠

+
1

𝑃
𝐸0(𝑅𝑠) 

This means that, if we perform a molecular dynamics (MD) simulation using 𝑁𝑃 particles 

under a constant temperature 𝑇, we get canonical ensemble of 𝑁 quantum particles. So, the 

problem is then how to do the DFT MD simulation. In fact, the method is well established. 

The quantum simulation can be done conveniently using, for example, PIMD developed by 

Dr. Shiga. 

http://ccse.jaea.go.jp/ja/download/pimd/index.jp.html 

 

Maximally localized Wannier orbitals 

In solid state physics, Wannier orbitals are constructed from the Bloch orbitals by taking a 

“Fourier transformation”. Wannier orbital is localized spatially with the decay rate depending 

on the electronic structure; it decays exponentially for insulators and polynomially for metals. 

The decay rate can be enhanced by adding different bands to the transformation. When this 

is done maximally, the orbitals are localized in atomic scale and can be taken as atomic orbitals 

under the crystalline environment. The resulting orbitals can be conveniently used as a basis 

of the strongly correlated electron models. In addition, it has a peculiar property surprisingly 

suitable for the study of ferroelectrics. 

 

Formulation 

We begin by defining the Wannier orbitals taking the phase factor 𝜑 explicitly taken into 

account. 

|𝑅𝑛⟩ =
Ω

(2𝜋)3
∫ |𝜓𝑛𝑘⟩𝑒𝑖𝜑(𝑘)−𝑖𝑘𝑅𝑑𝑘

𝐵𝑍

 

http://ccse.jaea.go.jp/ja/download/pimd/index.jp.html
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Here, 𝜓𝑛𝑘(𝑟) is the Bloch orbital, 

𝜓𝑛𝑘(𝑟) = 𝑢𝑛𝑘(𝑟)𝑒𝑖𝑘𝑟:        𝑢𝑛𝑘(𝑟) = 𝑢𝑛𝑘(𝑟 + 𝑅), 

𝑅 is the lattice vector and 𝜑(𝑘) is the phase factor that is periodic in BZ; 𝜑(𝑘) = 𝜑(𝑘 + 𝐺) 

for reciprocal lattice vectors 𝐺 . We can localize the orbitals more by including a unitary 

transformation among bands: 

|𝑅𝑛⟩ =
Ω

(2𝜋)3
∫ ∑ 𝑈𝑚𝑛

𝑘

𝑚

|𝜓𝑚𝑘⟩𝑒𝑖𝜑(𝑘)−𝑖𝑘𝑅𝑑𝑘

𝐵𝑍

 

The transformation matrix 𝑈 can be determined by minimizing a variance 

𝐿 = ∑(⟨0𝑛|𝑟2|0𝑛⟩ − ⟨0𝑛|𝑟|0𝑛⟩2)

𝑛

 

One can show that the matrix elements can be written using the periodic part of the Bloch 

function and derivatives in the reciprocal space. 

⟨𝑅𝑛|𝑟|0𝑚⟩ = 𝑖
Ω

(2𝜋)3
∫ ⟨𝑢𝑛𝑘|∇𝑘|𝑢𝑚𝑘⟩𝑒𝑖𝑘𝑅𝑑𝑘

𝐵𝑍

 

⟨𝑅𝑛|𝑟2|0𝑚⟩ = 𝑖
Ω

(2𝜋)3
∫ ⟨𝑢𝑛𝑘|∇𝑘

2|𝑢𝑚𝑘⟩𝑒𝑖𝑘𝑅𝑑𝑘

𝐵𝑍

 

The derivatives are in practice estimated using the finite mesh points spanning the Brillouine 

zone; this is the computational physics. In this case, we approximate the derivative by a finite 

difference as 

𝛻𝑓(𝑘) = ∑ 𝑤𝑏𝑏[𝑓(𝑘 + 𝑏) − 𝑓(𝑘)]

𝑏

 

where b’s are vectors chosen so that 𝑘 and 𝑘 + 𝑏 are neighboring mesh points. Similarly, 

𝛻2𝑓(𝑘) = ∑ 𝑤𝑏𝑏[𝑓(𝑘 + 𝑏) − 𝑓(𝑘)]2

𝑏

 

This indicates that ⟨𝑢𝑛𝑘|∇𝑘|𝑢𝑚𝑘⟩ is approximated using overlaps of the form ⟨𝑢𝑛𝑘|𝑢𝑚𝑘+𝑏⟩. It 

was shown that 

⟨0𝑛|𝑟|0𝑛⟩ = −
1

𝑁
∑ 𝑤𝑏

𝑘,𝑏

𝑏 Im(ln⟨𝑢𝑛𝑘|𝑢𝑛𝑘+𝑏⟩):              Wannier center 

⟨0𝑛|𝑟2|0𝑛⟩ = −
1

𝑁
∑ 𝑤𝑏

𝑘,𝑏

{1 − |⟨𝑢𝑛𝑘|𝑢𝑛𝑘+𝑏⟩|2 + |Im(ln⟨𝑢𝑛𝑘|𝑢𝑛𝑘+𝑏⟩)|2} 

hold. Therefore, the overlaps, Mnm
(𝑘,𝑏)

≡ ⟨𝑢𝑛𝑘|𝑢𝑚𝑘+𝑏⟩, plays the central role in calculating the 

localized Wannier orbitals. 
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Modern theory of polarization 

1. Motivation: Intuitive definition of polarization will be 

𝑷 =
1

𝛺
∫ 𝑑𝑟𝒓𝜌(𝒓)

 

𝑐𝑒𝑙𝑙

, 

where 𝛺 is the volume of the cell and 𝜌(𝑟) is the charge density, but this is ambiguous for 

solids. The result depends on how we take the origin and also how we take the unit cell. This 

is the well-known problem of the polarization. You may consider that the real materials are 

finite, so that the polarization should be well-defined after integrating over the whole sample. 

In that case, the integration can be transformed to the surface integration using the Green’s 

theorem. Thus, the theory requires argument of the surface. But, there is a way to define the 

polarization using the unit cell information only. 

 

2. New approach: One can solve the problem of the ill-defined “crystalline polarization” by 

considering “flow of charge” associated with displacement of ions. Phenomenologically, the 

polarization occurs associated with the ionic displacement, such that the polarization 𝑃 is 

zero at an initial configuration of ions but is nonzero at a displaced configuration. This fact 

makes it possible to define the polarization by connecting the initial unpolarized state to the 

final polarized state continuously and integrate the associated flow of charge as 

𝑃 = ∫ 𝑑𝑡
1

𝛺
∫ 𝑑𝑟𝒋(𝒓, 𝑡)

𝑐𝑒𝑙𝑙 

. 

This “adiabatic” definition has made it possible to modernize the theory of polarization. 

 

2.1 (DFPT formulation) Before introducing the modern theory, let us apply the DFPT 

explaining associated problems. To make the polarization to occur, we apply electric field with 

large wave length; because of the ill-defined nature as explained above, the wave length is let 

to be finite and will be extrapolated to infinity after the calculation. Because of the electric 

field, the atoms will be displaced in proportional to the field strength thereby generating a 

polarization 𝑃0 = 𝑍𝜏𝑅. The nuclear charge 𝑍𝜏 can be defined alternatively as the derivative of 

the polarization with respect to the atomic displacement 𝛿𝑅. This can be also described as 

the second derivative of the total energy with respect to the electric field and the atomic 

displacement 
𝜕2𝐸tot

𝜕𝐸𝜕𝑅
. The electron density will also be changed by the electric filed by 

𝜕𝜌

𝜕𝐸
𝛿𝐸 +

𝜕𝜌

𝜕𝑅
𝛿𝑅 +

1

2

𝜕2𝜌

𝜕𝐸𝜕𝑅
𝛿𝐸𝛿𝑅 + ⋯ : Because the first order changes are zero, the second order is 

important. Since the uniform electric field is also ill-defined, we practically apply the field of 

finite wave length and then extrapolated to infinity after calculation. From the second 

derivative modifies the value of Z, as 𝑍𝜏 + 𝑍eff, which is called Born effective charge. This is 

a DFPT approach to the Born effective charge. The modern approach is different. 

 

3. Formulation: Let us introduce a parameter λ connecting the unpolarized and the polarized 
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states; you may regard λ as a parameter for the displacement. By applying a first-order 

perturbation theory, change of the wave function can be written as 

|𝛿𝜓𝑛𝑘⟩ = −𝑖ℏ𝛿𝜆 ∑
⟨𝜓𝑚𝑘|𝜕𝜆|𝜓𝑛𝑙⟩

𝐸𝑛𝑘 − 𝐸𝑚𝑘
|𝜓𝑚𝑘⟩

𝑚≠𝑛

 

Corresponding current is obtained by calculating the expectation value of the current operator 

as, 

𝑗𝑛 =
𝑑𝑃𝑛

𝑑𝑡
=

𝑖ℏ𝑒𝜆̇

(2𝜋)3
∑ ∫𝑑𝑘

⟨𝜓𝑛𝑘|𝑝|𝜓𝑚𝑙⟩⟨𝜓𝑚𝑘|𝜕𝜆|𝜓𝑛𝑙⟩

𝐸𝑛𝑘 − 𝐸𝑚𝑘
+ 𝑐. 𝑐.

 𝑚≠𝑛

 

This can be rewritten using the periodic part of the Bloch wave function. The result is 

𝑑𝑃𝑛

𝑑𝑡
=

𝑖𝑒𝜆̇

(2𝜋)3
∫𝑑𝑘⟨𝛻𝑘𝑢𝑛𝑘|𝜕𝜆𝑢𝑛𝑘⟩ + 𝑐. 𝑐.

 

 

This is appealing in that the contribution from the unoccupied states disappears and that the 

derivative with respect to 𝑘 is conveniently accessed by the maximally localized Wannier 

orbital method. 

   When summing over all the occupied states 𝑛 and integration over 𝑡 (to connect the 

initial and final states) we finally arrive at 

𝑃(𝜆) =
𝑒

(2𝜋)3
Im ∑ ∫𝑑𝑘⟨𝑢𝑛𝑘|𝛻𝑘|𝑢𝑛𝑘⟩

 𝑛

 

𝛥𝑃 = 𝑃(1) − 𝑃(0) = 𝑃(1) 

This is equivalent to the quantity appearing in the Berry phase theory and thus we will regard 

𝑖⟨𝑢𝑛𝑘|𝛻𝑘|𝑢𝑛𝑘⟩  as a Berry connection or gauge potential. Note that this is the electronic 

contribution to the polarization. We need to add the ionic contribution 

𝑃ion =
𝑒

Ω
∑ 𝑍𝜏𝑅𝜏

𝜏

, 

as 

𝑃 =
𝑒

(2𝜋)3
Im ∑ ∫𝑑𝑘⟨𝑢𝑛𝑘|𝛻𝑘|𝑢𝑛𝑘⟩

 𝑛

+
𝑒

Ω
∑ 𝑍𝜏𝑅𝜏

𝜏

 

This way we arrive at this very useful formula. 

 

4. Quantum of polarization: Suppose we are integrating over a path within a one-dimensional 

Brillouine zone; 

𝑃𝑛 =
𝑒

2𝜋
𝜙𝑛 =

𝑒

2𝜋
Im ∫ 𝑑𝑘⟨𝑢𝑛𝑘|𝜕𝑘|𝑢𝑛𝑘⟩

π/L

−π/L

 

In this case, the initial and final points are equivalent because of the periodicity. So, the above 

integration path corresponds to a closed loop. 

   The phase of the wave function can be taken arbitrarily like 

𝑢̃𝑛𝑘 = 𝑒−𝑖𝛽(𝑘)𝑢𝑛𝑘 

except that the difference at the boundary 𝛽(𝜋/𝐿) − 𝛽(−𝜋/𝐿) is a multiple of 2π. When the 

polarization is calculated using this new wave function, we get 

𝜙̃𝑛 = 𝜙𝑛 + 2𝜋𝑚:         𝑚 ∈ Integer 
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indicating that the polarization can be defined within the modulo of e. In other words, we 

cannot definite uniquely the crystalline polarization, which may be understood as different 

paths can be used to connect the equivalent points in the Brillouine zone. 

   When this discussion is extended to a 3D system, it can be shown that the polarization is 

well defined within the modulo of 

𝑒𝑅/𝛺 

where 𝑅 is a lattice vector 

𝑅 = ∑ 𝑚𝑗𝑅𝑗

𝑗

. 

Please see a literature on modern theory of polarization for the proof. 

   The polarization can be rewritten using the relation 𝑟 = −
𝑖𝜕

𝜕𝑘
, as the real part of 

𝑃𝑛 = −𝑒 ∫
𝑑𝑘

2𝜋
⟨𝑢𝑛𝑘|−𝑖𝜕𝑘|𝑢𝑛𝑘⟩

π
L

−
π
L

= −𝑒 ∫
𝑑𝑘

2𝜋
⟨𝑢𝑛𝑘|𝑟|𝑢𝑛𝑘⟩

π/L

−π/L

 

 

5. Wannier center: We have learned that the Wannier orbitals are 

𝑤𝑛(𝑟 − 𝑅) = 𝛺 ∫
𝑑3𝑘

(2𝜋)3
𝐵𝑍

𝑒−𝑖𝑘𝑅𝜓𝑛𝑘(𝑟) = 𝛺 ∫
𝑑3𝑘

(2𝜋)3
𝐵𝑍

𝑒𝑖𝑘(𝑟−𝑅)𝑢𝑛𝑘(𝑟). 

Then, it is possible to show that the polarization can be described by the position of the 

Wannier center (after adding the contribution from the nuclear charge) 

𝑃𝑛 =
𝑒

𝛺
(𝑟𝑛𝑅 − 𝑅) =

𝑒

𝛺
(⟨𝑤𝑛𝑅|𝑟|𝑤𝑛𝑅⟩ − 𝑅). 

Note that the Wannier center represents the spatially distributed charge density as a point 

charge (see figure). We can thus regard the polarization effectively as the charge assigned to 

the Wannier center. Note that the calculation can be done efficiently when using the most 

localized Wannier orbitals, instead of the standard one shown here, but that formulation is 

skipped here. 

 
There are various ways to relate it to the flow of charge differently like 
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This difference corresponds to the existence of modulus. 

 

Density functional perturbation theory 

(http://iffwww.iff.kfa-juelich.de/~wortmann/IFF-Springschool45/C2.pdf) 

 

Here we study the perturbation theory within DFT, namely DFPT. DFPT is different from 

the perturbation theory of noninteracting systems in that the density response should also be 

taken into account. I will introduce DFPT in relation to the polarization of materials. 

 

1. Sternheimer equation for noninteracting systems 

The first-order change in the wave function 𝜓𝑖
(1)

 can be obtained by solving the Sternheimer 

equation 

(𝐻(0) − 𝜀(0)) |𝜓𝑖
(1)

⟩ = −(𝐻(1) − 𝜀(1)) |𝜓𝑖
(0)

⟩ 

where 𝐻0 and 𝜀0 are unperturbed ones and 𝐻(1) and 𝜀(1) are the perturbed ones and 

𝜀(1) = ⟨𝜓𝑖
(0)

|𝐻(1)|𝜓𝑖
(0)

⟩. 

This equation is solved by superimposing the unperturbed states as 

|𝜓𝑖
(1)

⟩ = ∑ 𝑐𝑖𝑗
(1)

𝑗

|𝜓𝑗
(0)

⟩ = ∑ 𝑐𝑖𝑗
(1)

𝑗∈𝐼

|𝜓𝑗
(0)

⟩ + ∑ 𝑐𝑖𝑗
(1)

𝑗∈𝐼⊥

|𝜓𝑗
(0)

⟩ 

where 𝐼  and 𝐼⊥  are states degenerate to 𝜓𝑖
(0)

 and other states, respectively. By this 

definition, 

(𝐻(0) − 𝜀𝑖
(0)

) |𝜓𝑖
(1)

⟩ = ∑ 𝑐𝑖𝑗
(1)

𝑗∈𝐼⊥

(𝜀𝑗
(0)

− 𝜀𝑖
(0)

) |𝜓𝑗
(0)

⟩. 

Therefore, 

𝑐𝑖𝑗
(1)

= −
⟨𝜓𝑗

(0)
|𝐻(1)|𝜓𝑖

(0)
⟩

𝜀𝑗
(0)

− 𝜀𝑖
(0)

    for 𝑗 ∈ 𝐼⊥. 

Using the gauge degrees of freedom to set 𝑐𝑖𝑗
(1)

= 0   for 𝑗 ∈ 𝐼. Therefore, 
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|𝜓𝑖
(1)

⟩ = − ∑ |𝜓𝑗
(0)

⟩
⟨𝜓𝑗

(0)
|𝐻(1)|𝜓𝑖

(0)
⟩

𝜀𝑗
(0)

− 𝜀𝑖
(0)

𝑗∈𝐼⊥

. 

This can be alternatively written as 

𝑃𝐼
⊥ (𝐻(0) − 𝜀𝑖

(0)
) 𝑃𝐼

⊥ |𝜓𝑖
(1)

⟩ = −𝑃𝐼
⊥ 𝐻(1) |𝜓𝑖

(0)
⟩    with 𝑃𝐼

⊥ = ∑ |𝜓𝑗
(0)

⟩ ⟨𝜓𝑗
(0)

|

𝑗∈𝐼⊥

 

or 

𝑃𝐼
⊥ |𝜓𝑖

(1)
⟩ = 𝐺𝐼⊥(𝜀𝑖

0)𝐻(1)|𝜓𝑖
0⟩   with 𝐺𝐼⊥(𝜀) = [𝑃𝐼

⊥ (𝜀 − 𝐻(0))𝑃𝐼
⊥ ]

−1
. 

 

2. DFT 

In DFT, one has to take the density variation into account. The first-order change in the 

energy is 

𝑑

𝑑𝜆
∑⟨𝜓𝑖|𝑇 + 𝑉ext + 𝑉H + 𝑉xc|𝜓𝑖⟩

𝑖

= ⟨𝜓𝑖
(0)

|(𝑇 + 𝑉ext)(1)|𝜓𝑖
(0)

⟩ +
𝑑

𝑑𝜆
𝐸Hxc[𝜌(0)]. 

The second order change is 

⟨𝜓𝑖
(0)

|(𝑇 + 𝑉ext)(2)|𝜓𝑖
(0)

⟩ + ⟨𝜓𝑖
(1)

|(𝑇 + 𝑉ext)(1)|𝜓𝑖
(0)

⟩ + ⟨𝜓𝑖
(0)

|(𝑇 + 𝑉ext)(1)|𝜓𝑖
(1)

⟩

+ ⟨𝜓𝑖
(1)

|(𝑇 + 𝑉ext)(0)|𝜓𝑖
(1)

⟩

+
1

2
∬

𝛿2𝐸Hxc[𝜌(0)]

𝛿𝜌(𝑟)𝛿𝜌(𝑟′)
𝜌(1)(𝑟)𝜌(1)(𝑟′)𝑑𝑟𝑑𝑟′ + ∫

𝑑

𝑑𝜆
(

𝛿𝐸Hxc[𝜌(0)]

𝛿𝜌(𝑟)
) 𝜌(1)(𝑟)𝑑𝑟

+
1

2

𝑑2

𝑑𝜆2
𝐸Hxc[𝜌(0)], 

with 

𝜌(1)(𝑟) = ∑ 𝜓𝑖
(1)∗(𝑟)𝜓𝑖

(0)(𝑟) + 𝜓𝑖
(0)∗(𝑟)𝜓𝑖

(1)(𝑟)

𝑖

. 

The perturbed Kohn-Sham orbitals 𝜓𝑖
(1)

 are obtained by solving the Sternheimer equation: 

(𝐻(0) − 𝜀𝑖
(0)

) |𝜓𝑖
(1)

⟩ = − (𝐻(1) − 𝜀𝑖
(1)

) |𝜓𝑖
(0)

⟩, 

with 

𝐻(1) = (𝑇 + 𝑉ext)(1) + ∫
𝛿2𝐸Hxc[𝜌(0)]

𝛿𝜌(𝑟)𝛿𝜌(𝑟′)
𝜌(1)(𝑟′)𝑑𝑟′ 

and 

𝜀𝑖
(1)

= ⟨𝜓𝑖
(0)

|𝐻(1)|𝜓𝑖
(0)

⟩. 
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3. DFPT for polarization 

Let us study the polarization, which can be characterized by change in the polarization 𝑃𝛽 

caused by a uniform displacement of an atom 𝜅 in the direction 𝑅𝜅𝛼: here uniform means 

that the atom in a cell is displaced together with its periodic images. The relevant quantity is 

the Born effective charge defined by 

𝑍𝜅,𝛽𝛼
∗ = Ω

𝜕𝑃𝛽

𝜕𝑅𝜅𝛼
. 

Since the total energy can be described as 

𝐸[𝜌] − ΩP ⋅ ℰ 

under the electric field ℰ induced by the polarization, 

𝑃𝛽 = −
1

Ω

𝜕𝐸[𝜌]

𝜕ℰ𝛽
. 

Therefore, 

𝑍𝜅,𝛽𝛼
∗ = −

𝜕2𝐸[𝜌]

𝜕𝑅𝜅𝛼𝜕ℰ𝛽
. 

This can be calculated by applying the DFPT. Since the 𝐸Hxc has not dependence on the 

atomic displacement and electric field, 𝑇 + 𝑉ext does not depend on the electric field, and the 

kinetic energy operator is not affected by a uniform atomic displacement, the equation is 

simplified as 

𝜕2𝐸[𝜌]

𝜕𝑅𝜅𝛼𝜕ℰ𝛽
= ⟨𝜓

𝑖

(ℰ𝛽)
|(𝑉ext)(𝑅𝜅𝛼)|𝜓𝑖

(0)
⟩ + ⟨𝜓𝑖

(0)
|(𝑉ext)(𝑅𝜅𝛼)|𝜓

𝑖

(ℰ𝛽)
⟩ + 2 ⟨𝜓𝑖

(𝑅𝜅𝛼)
|(𝑇 + 𝑉ext)(0)|𝜓

𝑖

(ℰ𝛽)
⟩

+ ∬
𝛿2𝐸Hxc[𝜌(0)]

𝛿𝜌(𝑟)𝛿𝜌(𝑟′)
𝜌(𝑅𝜅𝛼)(𝑟)𝜌(ℰ𝛽)(𝑟′)𝑑𝑟𝑑𝑟′, 

So, we need to solve the Sternheimer equation twice to get 𝜓𝑖
(𝑅𝜅𝛼)

 and 𝜓
𝑖

(ℰ𝛽)
, corresponding 

to change in the Kohn-Sham orbitals with respect to the atomic displacement and the 

generation of the electric field. 

 

About quantum espresso 

Now let us use the environment 

https://www.materialscloud.org/work/quantum-mobile 

which will install a virtual machine (Virtual Box 5.2.8 + Ubuntu 16.04.4LTS) on which you 

can run quantum espresso (v6.2.1) and wannier90 (2.1). 

 

<First assignment: transfer of the benzene > 
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Change your directory to wannier90-2.1 (depending on the version you installed) and then to 

examples/example12. Then you will find input files for the calculation of benzene. 

First, do an SCF calculation: In the SCF calculation, you get the effective Kohn-Sham 

potential, electron density and KS orbitals. 

pw.x < benzene.scf > scf.out 

 

Second, run wannier90 to generate a list of the required overlaps (written into the 

benzene.nnkp file). 

wannier90.x -pp benzene 

 

Third, run pw2wannier90 to compute the overlap between Bloch states and the projections 

for the starting guess (written in the benzene.mmn and benzene.amn files). 

pw2wannier90.x < benzene.pw2wan > pw2wan.out 

 

Finally, run wannier90 to compute the MLWFs. 

wannier90.x benzene 

 

Do this again by adding the lines to the benzene.win 

restart = plot 

wannier_plot = true 

wannier_plot_format = cube 

wannier_plot_list = 2-4 

Then you have files for the second to fourth MLWFs. By changing the digits, you can draw all 

the orbitals. 

 

1. Use xcrysden to draw all the MLWFs. 

 

Do the same thing after you have inserted a line at the end of benzene.win 

write_hr = true 

Then you will get benzene_hr.dat 

Focus on the third to fifth columns, say a, b, H. It indicates the transfer integral between the 

atoms a and b is H. 

 

2. Show the value of transfer on a picture describing the structure of benzene. You need to 

show only the largest ones, for example, only those whose magnitude is larger than 1 eV. 
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3. Describe scientific significance of the results. 

 

<Second assignment: Born effective charge of Pb in PbTiO3 > 

Following the example04 of the quantum espresso, calculate the Born-effective charge of 

Pb. Explain briefly procedures for the calculation, important parameters in the input file, 

result of the calculation. For this, use the ball and stick model obtained using, for example, 

xcrysden. Also, show scientific significance of the result. 


