Adiabatic connection

Towards rigorous DFT formulation



Adiabatic connection

. Adlabatlcally switch on the Coulomb interaction
A =T+ AW, + V4, (2.18)

* Keep the density n(7) constant!

Target system KS (fictitious) system

Assume v-representability always



Adiabatic connection

e HK functional for the intermediate

FA[n] = min(®|T + AW, |¥) (2.19)

Yon

= T,[n] + Ef[n] + EL[n]  (2.20)

* Note the linear dependence for Hx!

_ 1 (f n(ryn(ry) B
E{}[n] = EJJ |T1 — r2| Adrldrz = AEH[TL] (221)

E{[n] = (®@[n]|AWee|®[n]) — Ef[n] = 2E[n] (2.22)
EX[n] = (YA[n]|T + AW, |[W[n]) — (@[n]|T + AW,.|®[n]) (2.23)



Hellmann-Feynman theorem

P

OE! _
a/{n] = (WA [n]|Wee [P [n]) — (@ [n][Wee|@[n])  (2.24)
1
E.[n] = f (M) [ Wao |9 [])dA — (O[] |[Wee|®[n])  (2.25)
0

 Correlation functional has been defined w/o the kinetic energy
operator!




Averaged correlation hole

1
17 n(ront(ry, )
Ec[n] = E_(J) dA fj |r1 — 1"2| drldrz (226)
17 n(rl)n (ry,73)
= EJ_[ — r2| dr 1dr2 (227)

* Averaged correlation hole
(rlirZ) — fdln (rlJTZ)

* This needs to be determlned as a functional of the density!



Fractional number of electrons

* DFT is formulated for
1. Subsystems (embedded in a large system)
2. Finite temperatures = canonical ensembles
3. Grand canonical ensembles

N =N — 1+ f electron system

Q Mixed state € Pure state



DFT for mixed states

Eg\f = mfin Tr[f(’f" + W, + 17;16)], (2.30)
[=(1 - PPV + IRV PN (2.31)

e Consider only two states with different number of
electrons, for simplicity

E) = (1 - EY "+ fE



Integer discontinuity

dE)’ (EN —EV-1=—],whenN—1<N <N
0 0

dV  |E§*'—EY = —AywhenN <N <N +1
* ionization Iy and the affinity Ay are different!

» dE) /AN = pis discontinuous at the integer
number

* The fundamental gap, or the HOMO-LUMO gap, is
defined as

Iy — Ay = E}p.



Similarly for the KS-DFT

F|n] = Ilpin Tr|C(T + W) (2.38)
— TS [n] + EHXC [Tl] (239)

T.[n] = lgnin Tr[[,T]
s—n
[y = (1= f) [V YOV | + floNS YN f| (2.41)

(Remember that this is a simplified description using only two states)



Then, we can formulate the KS eq.

N
E = z n; f qb;k(r) <_%v2 + vne(r)> ¢i(r)dr + Ech[n] (2'42)

LN

n@) = ) mloi@I. (243)

l
e n;=1fori <N —1andny = f when considering the two states.

This way, partial occupation number has been justified.



Note on the KS-eq.

<—1V2 + Vs(r)> ¢:i(r) = £¢i(1) (2.44)

2
)
Vs (r) = ne (r) + gf;ggl ] .

* KS equation is unchanged

(2.45)

* Be careful about the exchange-correlation potential, E /én(r)!
5EHXC [Tl]
SEyycln] = + const | dn(r)dr (2.46)

on(r)
* Derivative with and without [ n(r)dr = N are different by a constant.

This is related to the constant appeared in HK theorem.

e Janak theorem applies, which is different from the Koopmans.

95
ani

= & (247)



More about Janak A

« HOMO of N 4+ 6 electron system

oEN
(ﬁ) = &lidios (2.54)
5 N+6
Ehamo = (2.55)

Jcpﬁgﬁo(r) (——VZ +vSN+5(r)> NEo s (r)dr. (2.56)
« LUMO of N — § electron system

1
eloMo = JﬁbLUMo(T)* <—§V2 + VSN_S(T)> Moo (dr. (2.57)

v FO (1) — v 0 (r) = A



More about Janak (cont’d)

elidMo = Elumo T Ak (2.58)
e After taking the limit,
elumo = —Ay — Al (2.60)
* Therefore
Egtp = €lumo — Etiomo T+ A%t (2.63)

HOMO-LUMO gap is not necessarily the fundamental gap (Iy — Ay)!



Existing functionals




LDA

ELPA[n] = j n(r) st 8 (0 (1) ) dr.

1
3/3\3
4\ 1T

€c (Ts) = 5

XC

n%(r) + &, (rs (n(r)))

(AlnT, + B+ Cr,nr,

a b
__I__

3/2
\TS TS /

where 1, = (
whenr, <15

whenr, > 1

3

4tn

f



GGA

FEE[n] = EAA) + [ cxc(n<r>)n<r>3<‘7 ”) dr, (3.10)

n(r)3

e Correction term can be larger, e.g., at infinity where the density low.

ESGA[n] j (n(r), Vn(r))dr (3.11)

Becke 88 Correct the asymptotic behavior of the exchange energy

LYP
PW91

PBE

Local approximation to the nonlocal exchange of rare gas
Local approximation to the HF pair density

Local modeling of the exchange hole and the averaged
correlation hole

Simplified PW91. Probably the most popular PBE



Meta-GGA

EmGGA — j f (@), Vn @), v2n(r), (1)) dr (3.13)
N

1
1) =5 ) Vi)’ (314

EO = mqgn(CDl'IA" + Vnelq)> + EH[nq)] + EXC[nCD'TCD] .

* Strictly, this is not the KS-DFT because of (1)



Hybrid DFT

EHF = ZZJ ¢za(T1)¢]a(T1)¢]a(7‘2)¢m(rz) drdr, (3.18)

| — 1y

E30 = qFEHY + pECCA + (1 —a — B)ELPA + cESSA + (1 — ¢)ELPA (3.17)

The most famous parameterization is known as B3LYP, which was constructed
by using the B88 exchange for the GGA exchange and the LYP correlation for
the GGA correlation.

EW = qElF + (1 — @) EPFA 4+ EDFA (3.19)

where DFA stands for any semilocal density functional approximation
(DFA). The most famous one is called PBEO where the fitting parameter
was set to be 0.25.



Double hybrid

E2PH = q EFY + (1 — a )EP™ + (1 — a )EPYA + a . EMP?,(3.22)

where MP2 stands for the second order approximation to the correlation
energy

N 2M 2
1 (Wi [ W) — (Wi [Wpo)]
B =—1) ),

‘ gt & — & — &

,(3.23)
ij=1ab=N+1

where the bracket appearing in the numerator indicates the Coulomb
integral

(i [Whas) _j i (roY; (Tz)¢a(r1)¢b(r2)

|1y — T3]

1dx2. (324)



Range separated hybrid DFT

long range, HF short range,DFA
E)](_‘CC — Ex g g 1 E g 4 EDFA

The range-separation is done using the error function as

Elong range HF
_ _%ZZJ ¢La(r1)¢]a(r1)f(ﬂ(||:11::Zzll_rc))¢]a(r2)¢la(r2) rldrz (3.27)
o

erf(x) + 1

fx) =




Exact exchange with OEP

drldrz, (318)

X

EZJ Gic(r1)Pjo(r1)P;s(r2)dis(12)

ri— ;|

oy 5E sn(r’) [ , ,

Svs(r) an(r’) S, (1) dr’ @) o(r’,T)dr’. (4.2)
where

Xo (", 7”)

—77 f qbl“(r')(/)““(’")‘/’ao(r)qu( D drydry + e (45)

o i=1a=N, +1 — &g
and
Ok Oy 8¢i,(r) |

Sv(r) 5¢w(r') M(,«)

lo

N i, @)
77 7 (@urtilon) 2 0o | “6)



Second-order Gorling-Levy perturbation theory

Effective KS potential

A =T+ W, + V*
is rewritten as
VA — AWy — VA External potential at A = 1

so that we start from
A= (T+V)+ A(We — V) — VA

Apply perturbation W, — Vi to the reference KS state &

W\ = _ (q)nlm\/ee_VHxlq)n>
@) Eniolcbn) —

The perturbed WF is inserted into the correlation energy
EZ = (WYMT + AW, |PA) — (@|T + AW, | D)
The second order (the lowest order) correlation energy is then

~~ AN 2

o W, — Vy | @
EP = (@|W,e|¥®) = (CI>|Wee—VHX|‘P(1))=—E ||< [Pee _HX| 3 .
n+0 E:n E:0




Summary and outlook

* The empirically determined correlation functionals
are improving in the accuracy year by year.

* But is not systematic!

* Density-density correlation is difficult to formulate
but density response is easier to access.



Fluctuation dissipation
theorem

(Kubo formula for density-density correlation)

on(r't)

Xt = o D




Density operators

Introduction of the density operator

N
AOEDIICETH
n(r) = (Wi, (1))

Pair density operator
Ay (11, 1y) = A1 (A (ry) — Ay (r)6(rp — o).

* Those are used to obtain

. 1 ,

T = —EJ[V,Z.ﬁl(r,r )]r,:rdr
1 )
Wee = Eff Wee (11, 1) (17, 72)dr1dTr;

‘7ne — jvne (r)Aa(r)dr



Correlation energy via density operator

1 A
b= [ an e - @ife) = 5 [ a1 [ D arar,,
0 1 2

(4.15)
where
n%,c(rlrrz) = n%(ﬁ:’"z) — nyks(ry,12).
This can be described as
ns(ry, 1) = (P Ay (ry, )| W)
= (VA (r)dR () |[W2) — 6(ry — rp) (WAL (r) |9
naks(r1,12) = (@A (r)A (r)|P) — 50y — (@A (r)|P)  (4.16,17)

and using the fact that the density is independent of 4, we have
ng (ry,12) = (PAA (rDA (r) [P — (@1 (r )R, () | D). (4.18)

Correlation has been related to the density fluctuation



Response functions

Static response of the KS system

' ) on(r")
r,r) =
X0 5v,(1)
time-dependent response
on(r't")
r't,rt) = ——=.
Xo( ) 5v.(rt)
Rather, we need response of the interacting systems
on(r't")
r't,rt) = .
XE T = S

1. Many-body perturbation theory
2. Time-dependent density functional theory



Many-body perturbation
theory

Quantum field theory (non relativistic)



Many-body Green’s function

h(r)
=[xt (-5 7 + ) ) 50
+o f j dxydx, T )BT () v, )P ) (x)
im -l Y@ =) i

Heisenberg representation

(1) = Py, ty) = etfltryp(xy)e il

(N[p(DPT(2)|N) when t; > ¢,

~(N[%(2)$(1)|N) when t, <t, 2)

iG(1,2) = (N|T|[Pp(DPT(2)]|N) = {

Time ordered Green’s function



Equation of motion

. a vz . ~ ~ ~ ~
(ﬁ + 7) G(1,2) =6(1—-2) — lz v(3,D)(N|T[PTBRYB)P)PT(2)]|N)

03

algt(l) _ _ieiﬁtl [l/’}‘(xl),i_l‘]e—iﬁtl
1
ﬂ — )Py + f dx, BT (x)v(rs, 1) P )P (x,)
(1 - A Ao T
“gfl) — —ihDHW) - i [ d3FEPADDEHD

9 \
la—th(l,Z)

N 61/7(11) ;

= 6(t; — t2)<N|1/3(1)1/;T(2)|N> + 0(t, — t3)

—6(t; — t2)<N|1/;T(2)1/;(1)|N> —0(t; —t3) (N l/;T(Z)a—tl N



Equation of motion

. a vz . ~ ~ ~ ~
(ﬁ + 7) G(1,2) =6(1—-2) — lz v(3,D)(N|T[PTBRYB)P)PT(2)]|N)

03

0 G(1,2)
1at1 ’

= 5(1,2) + h(DG(1,2) — i f B3 v(13)[6(t: — L)(N[FTR)BR)BAIG (2)|N)
— 0(t, — t1) (NPT (2)PTBR)PB3)P(1)|N)

i i2G,(1,2;1',2") = (N|T[P(DPp2)PpT (NPT (2"H]|N)

. 0
la—th(l,Z)

Naﬁg)A

= 6(t; — t2)<N|1/3(1)1/;T(2)|N> + 0(t, — t3)

—6(t; — t2)<N|1/;T(2)1ﬁ(1)|N> —0(t; —t3) (N l/;Jr(Z)a—tl N



Equation of motion

)
i——G(1,2) = 8(1,2) + h(1)G(1,2) +1i j d3v(1,3)G,(1,3%; 2,31
1

t3t >t > ts
Once the EOM has been solved,,,
ny (%1, %5) = (N|PT () (x1)|N) = —iG (x1ty, x,5t7) (3)

m(ryry) = =i ) Glroty,T,0t)). (4)
(e)



Lehman representation

iG(xl,xz,T)

=000 ) (NBGDIN + 1, a)(N + 1,afip* ()| N)eiFnsaa=Ew)e
—6(-7) za(N|1ﬁ+(x2)|N —1,a)(N — 1,a|d(x))|N)e {(Ev-En-1a)T  (5)

G(xlerIw)

B z (N[p(x)|N + 1, a){N + 1, a|pT(x,)|N)
- L, w—Eyy1q+ Ey +i07F

. Z (N[PT(x)|N — 1, a)(N — 1, a|h(x,)|N)

w— Ey_1q+ Ey — i0%

_ fa(x)fq (x2) + Z | Z(xl)fi*(xZ)

, 6
qw~+ A, +i0% — I, —i0% (6)

Wave function of the quasi-particle



Linear response of many-body

H(®) = J AT Vexe (1, t)dr

oU,(t,t —
i% = H'; (), (¢, tp)
This 1s solved as
t t
U(t,ty) ~1—i| dt' B (t") =1—1] dt’ eiflot’ g(¢")e 1Hot"
to t0

Therefore, the expectation value of the density is given as
sn(rt) = (Ul (t, to) A, (ro) U (t, ty))

t
=i | de' [ ([ o, a0 e ()
Lo
From the definition of the response function, we have

x(re,r't") = ([A;(rt), 7, (r't")])



Two-body Green’s function
i2G,(1,2;1,2") = (N|T[p (PP T (1)1 (2)]|N), (7)

propagation of a pair of particles; electrons, holes, or electron-hole

We define the four-point linear response function as

iy(1,2;1,2) = i26,(1,2;1',2") — iG(1,1)iG(2,2"). (8)

Because the special case
1)((1,2, xllti'_, xlzt;)

= (N|T[$T@)PPTHP2)]|N) — (N|[HTANPD)|NUN[PT(2)P(2)|N) (9)

can be regarded as a natural extension of the (one-body) response function.
Lehman representation is

x (X1, x5; x’l,x’zA; W) A i i
_ Z [<N|¢+(1')¢(1)|N,n>(1v,n|¢+(2')¢(2)|N>
n#0 w— (Eyn— Ey) +i0*
(N[t @) PN, n){N, n|pT A)P(D)|N)

— 11
w+ (Eyn—Ey)—i0* (1)




For independent electron-hole pairs

rip(1,2;1,2") = —-ic(1,1")G(2,2") (12)
or
xip (X1, X925 X1, X5;T) = —iG (x4, X5; T)G (X2, X1; —T) (13)

)(Ip(x1 X35 X1, Xp; )
fi (D) fa(x) fa () fi(x2) fl (x2) fa(x2) fq (x1) fi(x1)
w—(E,—€)+i0t w+(E,—E;)—i0t

. (14)

L<N<a

In this approximation, the response function can be described by the
wave function of quasiparticles



Let us return to the
ACFD formalism

Adiabatic connection fluctuation dissipation theorem



The response function at finite 4

ix)(rity, ratz)
= (WHT[A (r1t) A (1) ] |W2) — (P T [AA (rit) ||$ANWAH T | A (r,82) | [94)
= (PHT[A (r1t)AA (1) ] |W1) — (WA ) [PANPAAG) [P)

(4.19)

If we sett, = t; + 0T, the Heisenberg phase factor is canceled out and
(1, 12T = 07) = (PHAEDAE) W) — (PHRG D [PAWHAGE)|w?).

(4.20)
Comparing with a similar one for non-interacting case
iXo(ry,12: T = 07) = (@A DAT) ) — (DA | PN P[A,)| D). (4.21)
We obtain
n%C(rl,rz) =[x (ry, ;1 =07) — xo(ry,r2;T =07)], (4-22)

co

211

— 00

dw .
- j 8O 00 [y (1, 723 @) — 10 (re, T3 )], (4.23)



The response function at finite 4

da)

+
nﬁ,c(rl,rz) — — 27-[1 plw0 X1, 1 w) — xo(ry, 15 w)], (4.23)
- i) o )
— la)0+ Xﬂ. rl) r2; w X() rl, 1‘2, w
EC - 2 J dﬂ. j 27_[1 jj _ r2| drldrz
0 —o00

Correlation energy has been related to the response function



Time-dependent DFT



Runge Gross theory

* there exists a one-to-one correspondence between the time-dependent
density n(r, t) and the time-dependent effective potential v (r, t), so

that n(r, t) can be obtained by solving the time-dependent Kohn-Sham
equation:

d
i ou(rt) = [~V + 0] ot 0)

and

N
n(,0) = ) loir, O



TD-DFT within linear response

Sn,(r,t) = f dt’ j dr yi(rt, Tt )svid (r't)
0

where
on(rt)

5vé1xt(r’t’)

The (general) response function can be given (from the definition) as
)(/1(1" 1", (1))

Z[wn(rnw (ARG W) (0l wa) AR )

W — Wy +i07F W+ wy, +i07F

n(rert) =

m+0



TD-DFT within linear response

sn(r,t) = j dt’ j dr' xaxs(rt, rt)svi(r't),
° sn(rt)
Svi(r't’)’

Xaxs(rt,T't) =

and , ,
o Mo} el (r)ei(r)
W — Wj + 11

on(r’'t
Svd(rt) = vl (rt) + Jdr’ . E l")| + jd r'dt'Ki.(rt,r't)én(r't"
Svi (rt)
A T41Y — XC
K .(rt,r't") = IO

(amm v




Lon(r’t)
Ir —r'|

TD-DFT within linear response

Svd(rt) = svi (rt) + fdr + Jd r'dt'Ki.(rt,r't)én(r't)

ony(r,t) = J fdr’X,l(rt,r’t’)cﬁvglxt(r’t’)

o 0
= [ ar' [ ar' pustrereovdae)
0

Then we arrive at a Dyson equation

x(re, r't’)

— kst ) + j j j Taxks @t T2t [ = ) | K2 (a0 06) | 1 (ot 1)

Once the exchange-correlation kernel K. has been given a functional form,
one can obtain the response function by solving the Dyson equation.



Many-body approach to
the response function

Random phase approximation and beyond



Self-energy

laiG(l 2) = 6(1,2) + h(1)G(1,2) + 1Jd3v(1,3)G2(1,3+; 2,37, (15)
1

Assume existence of the self-energy

j d3%5,(1,3)G(3,2) = —i f d3v(1,3)G,(1,3%;2,3%) (17)

or

z:HXC(]-)AI') — _ljd3v(1,3)G2(1,3+, 2;3++)G_1(214) . (18)

Then the EOM has a closed form

[lai — h(l)] G(1,2) = 6(1,2) + f d3%,.(1,3)G(3,2). (16)
1



[lai - h(l)] G(1,2) = 8(1,2) + f d3%11,.(1,3)G(3,2) (16)
1

Green’s function for independent electrons

[lail . h(l)] Gindep(1,2) = 6(1,2) (19)
* Using G(1,2) = [ Gingep(1, 4)Gmdep(4,3)G(3,2) in (16), we get
[ @3[6iden1.3) - 2 (13]G 3.2 = 51.2) (20)
* This is rewritten as
6(1)2) — Gindep(liz) + jj Gindep(1:3) ZHXC(3I4)G(472)J (21)
* oras
G7H(1,2) = Gindep(1,2) = Zpxc(3,4). (22)

Dyson equation for the one-body Green’s function



Quasi particle equation

Fourie transform is (assuming homogeneity in time) given as

lw — h(r1)]G(x1, x2; w) = §(xq,x;) + jdx3Zch(x1;x3; w)G(x3,x2;w) (23)

Using the pole €, and the wave function f; (x) of the Green’s function, we can
rewrite Eq. (23) at the pole as

(€ — h(rolfi e fi (x2) = j A5 Zipee (1, 233 € e (X3) i () = O, (24)

when there is no degeneracy. This can be further simplified as

h(r)fi(x1) + fdx;; Zhxc (X1, X35 E) fre (x3) = € fire (x1). (25)

|H

The wave function follows a Schrodinger like equation, where the “potential” is time-

dependent and complex.



Exchange-correlation
from first-principles

Hedin’s equation




Green’s function in the interaction
representation

H'(ty) = jdl u(1)n(1)

The Green’s function can be described using the interaction representation
(N|T[spPt)]|n)
(NIT[S]IN) ’

where S is the time-evolution operator in the interaction representation

G(1,1) = —i

S(t,, tp) = exp —ifdtlH'I(l) ;S =S(—o0, ).

The two-body Green’s function is also
(N|T[sp P @)t 2D A"]|N)

62(1,1 ; 2,2’) = (—i)? (N|T[S]|N)




Schwinger’s trick

i% — h(1) - u(l)] G(1,1) + if d2v(1,2)G,(1,1,2%,2%F) = §(1,1).
1

Differentiate with respect to the perturbation

56(1,1) : , :
NN —G(1,1,2,27) +iG(1,1)G(2,2%)

= —G,(1,1,2,2%) +iG(1,1){(A(2))

Th?n,
5G(1,1)

oty ou(2)

ii—h(l) —u(1) —dev(l,Z)(ﬁ(Z)) G(1,1") — inZv(ﬁ, 2)

= 5(1,1).

5G(1,3)

su) ¢ G1)

2(1,1) = JdZv(l,Z)(ﬁ(Z))Ml,l’) + iﬂdZB v(1%,2)
= yH(1,1") + Z*¢(1,1)



Dyson equation

[ii — h(1) - u(l)] G(1,1) - if d22(1,2)6(2,1) = 5(1,1).

ot

When unperturbed Green’s function is defined from

[ii — h(l)] ¢O(1,1) =6(1,1),
dt,

we have the equation of Dyson type

G(1,1)=6O(1,1) + f J d236©(1,2)2(2,3)6(3,1).

We need to perform the differentiation with respect to u to get the self-energy



Vertex function

* Hartree-potential (total potential)

V(1) = u(l) + j d2v(1,2)(A(2))

* Consider the response of the Green’s function to the change in the total potential;
6G~1(1,2)
6V (3)

* The vertex function I'(1,2; 3) can be rewritten in a Dyson form as

'(1,2;3) = 6(1,2)8(2,3) + j j j 44567 5;;21;;2))

— I'(1,2;3)

G(4,6)G(7,5)r(6,7; 3),

This will be used eliminate the u-derivative



Exchange correlation self-energy

2XC(11)_lﬂd23 v(1t, 2) 5u(2) ¢71(3,1)

The definition can be rewritten as

2*(1,2) = if d3456 v(1T, 3)5—86(1 6)I'(6,2;5)
Note that dielectric function is, by definitiorE, )
oV (4
_1 —
e +(4,3) —6u(3)

Then, defining the screened Coulomb as

W(1t,4) = f d3 v(1t,3)e 1(4,3)

We get
XX(1,2) = 1ﬂ d56 W(17%,3)G(1,6)I(6,2;5)



Dyson equation for W

4
w@a@at,2)=v(1",2) + j d34 v(1t,4) 5?514(’:) )gzgi v

[ 5G(4,4™)
d34 v(1%,4) 5V (5)

6{p(2))
5V (5)

(3,2)

=v(1%,2) + J W (5,2)

[

=v(17%,2) +J d34 v(1%,4) w(5,2)

* The final derivative, appearing in the last line, is the polarization and can
be eliminated as

-1
P(1,2) =i j d34 G(1,3) 6634

G(4,17 Chain rule
SV (2) (417

= —j j d34G(1,3)G(4,11)r(3,4;2)

W1+, 2) = v(1+,2) + j d34 v(1*, 4)P(2,5)W (5.2)



Final equation

G(1,2) = G°(1,2) + [ d34G°(1,3)2(3,4)G(4,2)
¥X(1,2) =if d34W(17,3)G(1,4)T(4,2;3)
P(1,2) = —if d34 G(1,3)G(4,11)I'(3,4; 2)
w(1,2) =V:(1,2) + | d34V:(1,3)P(3,4)W(4,2)
o 62%¢(1,2)
r'(1,2;3) =6(1,2)6(1,3) + [ d4567 SG(45)
 When the equations are solved self-consistently, you have done. If, on the

other hand, you approximate G°, for example, using KS orbital, it can be
regarded as an advanced DFT.

¥*¢(1,2) = if d34W(1+,3)G(1,4)
P(1,2) = —if d34 G(1,3)G(4,1")

* This approximation is called as GW approximation (GWA).

G(4,6)G(7,5)T(6,7;3)



Bethe-Salpeter equation

* When using
52*¢(1,2)

5G(4,5)

* You can take into account the interaction of quasi particles

r'(1,2;3) =6(1,2)6(1,3) + [ d4567 G(4,6)G(7,5)

Now we derive the Dyson equation



BSE from Schwinger’s trick

* Four point response function
x(1,2;1,2) =L(1,1,2,2") =i6,(1,1,2,2) — 6(1,1)6 2, 2)

* nonlocal external potential u(2,2) is introduced to yield
L 8G(1,1)
L(1,1,2,2 ) =—i :

( ) =i 5u(2,2)

e Using the identity of the functional derivative,

SF(1,1) §F71(3,3)
56(3) _J F(13) 5G(2)

F(3,1)d3d3,

* we obtain
5G(1,1)
su(2,2)

8671(3,3)

su2ay 4343

— j G(1,3)G(3,1)



8G(1,1)
su(2,2)

o863
—JG(1,3)G(3,1) S22y 4343

BSE

 When this is substituted into the Dyson equation
¢1(33)=6;%(33) —u(33)-2(33),

* we obtain
8G(1,1) , . 82(3,3) ,
S22 G(1,2)G(2,1) + f G(1,3)G(3,1 )mdBdB
: .~ 62(3,3) 6G(4,4' ,
= G(1,2)G(2,1) + f G(1,3)G(3,1)8GE4 4% SuEZ 2; d3d3 d4d4’.

= Lo(l,ll, 2,2,) ’ , /

52(3,3

K(3,3',4,4") =i 5 GE4 4%

e-h interaction kernel

L(1,1°,2,2")
= L,(1,1',2,2") + j Lo(1,1',3,3)K(3,3",4,4)L(4,4',2,2")d3d3 d4d4’



Interaction kernel

62H(3,3)

K*(33,4) =i 5G(4.4)

* is called bare Coulomb exchange interaction and can be described as
K*(3,3,4) = 8(3,3)8(4,4 )v(3,4).
* While the rest yields, within the GW approximation,
526%(3,3) sW(3+,3)
5G(4,4) 5G(4,4")
* Using the polarization, W = v + vPW, which replaces SW /6G = W §P/6G W with

52" (3,3) 6P (5,6)
L SG(a) 8G(4.4)

=—-5(3,4)8(3,4)W(3%,3) - 6(3,3)

[

w(6,3)d5d6.

= -5(3,4)6(3,4)W(3+,3) - jG(33)W(3+ 5)



GW + BSE

e Using the approximation P = —(GG,

826" (3,3)

1 5G(4,4)

B ;L N , 5(G(5,6)G(6,5)) :
__5(3,4)5(3,4)W(3+,3)+1jG(3,3)W(3+,5) 3G (44) w(6,3)d5d6,

* and further,

82 (3,3)

1 5G(4,4)

= -5(3,4)8(3,4)W(3%,3) +iw@*,4)6(4,47)w(4,3) +iw(3+,4)G6(4,47)W(4,3)

K*(3,3',4,4") = §(3,3)8(4,4)v(3,4)
K9(3,3',44") = -6(3,4)6(3'4)W(3%,3")  =GW +BSE

Il W (3,3%)
x'(33'44") — _ ' ’
CG3) @




Application to ACFD

DFT-RPA



Direct RPA

* When using the direct term only,
Kite(r1,72; 0) = Kf(r1,13) = w(ry, 13). (4.28)

 When this is used, the resulting equation for the response function is
X2y, 172 w)

= xo(ry,rw) + Ajff Xo(r1, 13, 0)v(13, 1) X1 (s, T2 ). (4.29)

* By this we can define the correlation functional within this approximation called

direct RPA as
EdRPA
C

1 1 “dw e, 72 0) Y0 (T, T w
_ j d/lj 4w w0t jﬂ)(o( 1,73 0) X0 (T4, T )drldrzdrgdm
21T — r2||r3 — r4|

+ )2 J J j Xo(r, T3 w)xo(rs, T5;(U)X0(r6,1‘2;a))

drdr,dr.dr,dr=dr
|11 — 12|13 — 1415 — 7] AT

+- | (4.30)




X/l(rll r,, Cl))
= Xo (1, T3 w)

+/1Hf Xo(T1, 73, 0)v(13, 1) X3 (T4, T2; ) . (4.29)

Practical dRPA

* Within dRPA the Dyson equation for the response function is
RPA
Xﬁi (x1, X2, X1, X3; W)

. . A .
= X0 (xl) X2, xll) x,2) (1)) + fjj dx3dx4dx5dx6)(0(x1r X4, xllr X3, w)KH (x3, X65 X4, x5)

X X3 REA (x5, X5, X6, X5 ) (4.36)

* with the kernel being given by
Ké(xl,xz,x’l,x’z) = Av(|ry — )6 (x; — x1)8(x; — x3)



Basis representation

e With
fia(1,%1) = @7 (1) a (1)
fai(xl:xl) = ¢2(x1)¢i(x1)-

* Yo can be expanded as

X0 (xp X2, x,1» x,z; w) z [Xo]pqﬁg(xp x’1)fq* (x2, xlz)
Pq

* where
5ij5ab
[XO((‘))]ia,jb - 0 — (ga . gi) +i0+
8;:6,,
[)(o(w)]ai,bj — —

w+ (g, — &) —i0t

Lxo(@)liap; = Lxo(@)laijm = 0.



Matrix representation

* The previous equation can be rewritten as

cort@ =% 2)-o( %) 439
* with
La]b — (g — & )5 5ab
* Then A B
(XSRPA)—l(w) = — [(B% A’g) — ((1) _01)] (4.40)

* with

(ADiajp = Deigjp + MDad;|Pibp)

(B)iajb — (¢a¢b|¢'¢j) (4.41)

To take the inverse in Eq. (4.40), we solve the generalized eigenvalue
problem

A, B, Xn,l)_ 1(1 0 (Xn,/l)
(5 a)(r)=i(o DG (42)



Matrix Representation

* Under the normalization condition for the eigenvectors (X Y), the response function is
1 X X
dRPA/, .\ _ E : n,/l) + A\ fort ot
w) = X — . X Y ,
X (@) [w — w} +i0t (Yn,l ( nA l) w+ wl —i0t (YM> ( nA "”1)]
n

* and the correlation part of the two-body density matrix is then
© dw v, v:;hooy:,xT
A,dRPA _ + AL A 0,2 0 0
nkORPA — _ j e [xa(w) = xo(@)] = ) ( vk ) (o 1)]
n X n,A Yn,A X n,AX n,A
* Finally the dRPA correlation functional is given by

o Zm
EdRPA j z z <¢i¢b|¢a¢j>(yn,/1)ia(yn,/l)jb + <¢ii¢j|¢a¢b>(xn,7t)ia(x)jb
[jJsN<ab n +<¢a¢b|¢i¢j>(Xn,/1)ia(Yn,,1)jb

Hbio|$ad)) | (0ia(Xnn) , — 816 |}

dRPA is known to work well for metallic system, but for insulators, self-interaction
error remains. One should include more terms.



