
About the local spin density functional 

   Since 

𝑇𝑠[𝑛↑, 𝑛↓] = ∑ ⟨𝜙𝑎𝜎|
1
2

∇2|𝜙𝑎𝜎⟩

𝑎𝜎

  

we can see that 

𝑇𝑠[𝑛↑, 𝑛↓] = 𝑇𝑠[𝑛↑, 0] + 𝑇𝑠[0, 𝑛↓] 

and, for a spin-unpolarized case, 
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Then, 

𝑇𝑠[𝑛↑, 𝑛↓] =
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𝑇𝑠[2𝑛↑] +
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𝑇𝑠[2𝑛↓]. 

The non-interacting kinetic energy functional can be expressed through a single component 

functional. 

 

   For the Thomas Fermi model, we can expand the kinetic energy functional as 

𝑇[𝑛] = 𝑇0[𝑛] + 𝑇2[𝑛] + 𝑇4[𝑛] + ⋯ 

where 
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This can be proved by following steps (sketch): 

   Within the Hartree-Fock, the one-body Green’s function can be written as 

𝐺(𝑟, 𝑟′; 𝐸) = ∑ 𝜙𝑖(𝒓)𝜙𝑖(𝒓′) exp[−𝑖𝜖𝑖𝐸]

𝑖
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, 

from which the density matrix is given by 

𝑛(𝒓, 𝒓′) = ∫
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One can show, without derivation here, that the Thomas Fermi Green’ s function is 

𝐺TF(𝑟, 𝑟′; 𝐸) = (
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When retaining the mass and the Planch constant, it is 
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When expanding it with respect to ℏ, we obtain the kinetic energy functional as 
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and the electron density as 
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Then one can relate the kinetic energy with the electron density as 
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Likewise, we can derive the form for 𝑡4 and relate it with the density. 

 

The form for 𝑇[𝑛] can be used derive the form for 𝑇[𝑛↑, 𝑛↓]. When, for example, the relative 

spin-polarization is constant of space as 

𝑛↑(𝒓) = 1 2⁄ (1 + 𝑥)𝑛(𝒓) and 𝑛↓(𝒓) = 1 2⁄ (1 − 𝑥)𝑛(𝒓). 

 

and 

we obtain 

𝑇0[𝑛↑, 𝑛↓] = 1 2⁄ [(1 + 𝑥)
5
3 + (1 − 𝑥)

5
3] 𝑇0[𝑛] 

𝑇2[𝑛↑, 𝑛↓] = 𝑇2[𝑛] 

𝑇4[𝑛↑, 𝑛↓] = 1 2⁄ [(1 + 𝑥)
1
3 + (1 − 𝑥)

1
3] 𝑇4[𝑛]. 

 

For the exchange, when describing the exchange energy 𝐸x using the Kohn-Sham orbitals, 

not describing 𝐸x of the Hartree-Fock, 

𝐸x[𝑛↑, 𝑛↓] = 1 2⁄ 𝐸x[2𝑛↑] + 1 2⁄ 𝐸x[𝑛↓] 

and 

𝐸x[𝑛↑, 𝑛↓] = 1 2⁄ [(1 + 𝑥)
4
3 + (1 − 𝑥)

4
3] 𝐸x[𝑛]. 


