About the local spin density functional
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we can see that
Tslny, ny] = Ts[ny, 0] + T5[0, ny ]
and, for a spin-unpolarized case,
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Ts[n] =Ty [En 0] + T [O,En] = 2T; [O,En].

Then,
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Tslnn ] = 5 Ts[2m] + 5 Ts[2n, .

The non-interacting kinetic energy functional can be expressed through a single component

functional.

For the Thomas Fermi model, we can expand the kinetic energy functional as
T[n] = To[n] + Tz[n] + Tyn] + -

where
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This can be proved by following steps (sketch):

Within the Hartree-Fock, the one-body Green’s function can be written as
G(r,r";E) = Z ¢;(r)p;(r") exp[—ig,E] = Z () (") exp[—iﬁE],
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from which the density matrix is given by
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One can show, without derivation here, that the Thomas Fermi Green’ s function is

, 1 32 ir—r)% r+r
GTF(T.T;E)=(—2m.E) exp | ——z—— — BV |——]|.

When retaining the mass and the Planch constant, it is
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When expanding it with respect to #, we obtain the kinetic energy functional as
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and the electron density as
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Then one can relate the kinetic energy with the electron density as
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Likewise, we can derive the form for t, and relate it with the density.

The form for T[n] can be used derive the form for T[n;,n;]. When, for example, the relative
spin-polarization is constant of space as

mr)=1/2A +x)n(r)andn(r) = 1/2 (1 — x)n(r).

and

we obtain
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Tz [n,ny] = Ty [n]

1 1
T, = 1/2 [(1 +x)3+(1— x)S] T, [nl.

For the exchange, when describing the exchange energy E; using the Kohn-Sham orbitals,
not describing E; of the Hartree-Fock,
Exlny,ny] = 1/2 Ex[2m] + 1/2 Ex[ny]

and

Exlny,n ] =1/2[(1+ x)g +(1- x)%] E,[n].



